Измерение пи. Число пи - значение, история, кто придумал. Кто и шутя, и скоро пожелаетъ


Для вычисления сколько-нибудь большого количества знаков пи предыдущий способ уже не годится. Но существует большое количество последовательностей, сходящихся к Пи гораздо быстрее. Воспользуемся, например, формулой Гаусса:

p = 12arctan 1 + 8arctan 1 - 5arctan 1
4 18 57 239

Доказательство этой формулы несложное, поэтому мы его опустим.

Исходник программы, включающий в себя "длинную арифметику"

Программа вычисляет NbDigits первых цифр числа Пи. Функция вычисления arctan названа arccot, так как arctan(1/p) = arccot(p), но расчет происходит по формуле Тейлора именно для арктангенса, а именно arctan(x) = x - x 3 /3 + x 5 /5 - ... x=1/p, значит arccot(x) = 1/p - 1 / p 3 / 3 + ... Вычисления происходят рекурсивно: предыдущий элемент суммы делится и дает следующий.

/* ** Pascal Sebah: September 1999 ** ** Subject: ** ** A very easy program to compute Pi with many digits. ** No optimisations, no tricks, just a basic program to learn how ** to compute in multiprecision. ** ** Formulae: ** ** Pi/4 = arctan(1/2)+arctan(1/3) (Hutton 1) ** Pi/4 = 2*arctan(1/3)+arctan(1/7) (Hutton 2) ** Pi/4 = 4*arctan(1/5)-arctan(1/239) (Machin) ** Pi/4 = 12*arctan(1/18)+8*arctan(1/57)-5*arctan(1/239) (Gauss) ** ** with arctan(x) = x - x^3/3 + x^5/5 - ... ** ** The Lehmer"s measure is the sum of the inverse of the decimal ** logarithm of the pk in the arctan(1/pk). The more the measure ** is small, the more the formula is efficient. ** For example, with Machin"s formula: ** ** E = 1/log10(5)+1/log10(239) = 1.852 ** ** Data: ** ** A big real (or multiprecision real) is defined in base B as: ** X = x(0) + x(1)/B^1 + ... + x(n-1)/B^(n-1) ** where 0<=x(i) Work with double instead of long and the base B can ** be choosen as 10^8 ** => During the iterations the numbers you add are smaller ** and smaller, take this in account in the +, *, / ** => In the division of y=x/d, you may precompute 1/d and ** avoid multiplications in the loop (only with doubles) ** => MaxDiv may be increased to more than 3000 with doubles ** => ... */ #include #include #include #include long B=10000; /* Working base */ long LB=4; /* Log10(base) */ long MaxDiv=450; /* about sqrt(2^31/B) */ /* ** Set the big real x to the small integer Integer */ void SetToInteger (long n, long *x, long Integer) { long i; for (i=1; i/* ** Is the big real x equal to zero ? */ long IsZero (long n, long *x) { long i; for (i=0; i/* ** Addition of big reals: x += y ** Like school addition with carry management */ void Add (long n, long *x, long *y) { long carry=0, i; for (i=n-1; i>=0; i--) { x[i] += y[i]+carry; if (x[i]/* ** Substraction of big reals: x -= y ** Like school substraction with carry management ** x must be greater than y */ void Sub (long n, long *x, long *y) { long i; for (i=n-1; i>=0; i--) { x[i] -= y[i]; if (x[i]<0) { if (i) { x[i] += B; x--; } } } } /* ** Multiplication of the big real x by the integer q ** x = x*q. ** Like school multiplication with carry management */ void Mul (long n, long *x, long q) { long carry=0, xi, i; for (i=n-1; i>=0; i--) { xi = x[i]*q; xi += carry; if (xi>=B) { carry = xi/B; xi -= (carry*B); } else carry = 0; x[i] = xi; } } /* ** Division of the big real x by the integer d ** The result is y=x/d. ** Like school division with carry management ** d is limited to MaxDiv*MaxDiv. */ void Div (long n, long *x, long d, long *y) { long carry=0, xi, q, i; for (i=0; i/* ** Find the arc cotangent of the integer p (that is arctan (1/p)) ** Result in the big real x (size n) ** buf1 and buf2 are two buffers of size n */ void arccot (long p, long n, long *x, long *buf1, long *buf2) { long p2=p*p, k=3, sign=0; long *uk=buf1, *vk=buf2; SetToInteger (n, x, 0); SetToInteger (n, uk, 1); /* uk = 1/p */ Div (n, uk, p, uk); Add (n, x, uk); /* x = uk */ while (!IsZero(n, uk)) { if (p/* Two steps for large p (see division) */ Div (n, uk, p, uk); } /* uk = u(k-1)/(p^2) */ Div (n, uk, k, vk); /* vk = uk/k */ if (sign) Add (n, x, vk); /* x = x+vk */ else Sub (n, x, vk); /* x = x-vk */ k+=2; sign = 1-sign; } } /* ** Print the big real x */ void Print (long n, long *x) { long i; printf ("%d.", x); for (i=1; i/* ** Computation of the constant Pi with arctan relations */ void main () { clock_t endclock, startclock; long NbDigits=10000, NbArctan; long p, m; long size=1+NbDigits/LB, i; long *Pi = (long *)malloc(size*sizeof(long)); long *arctan = (long *)malloc(size*sizeof(long)); long *buffer1 = (long *)malloc(size*sizeof(long)); long *buffer2 = (long *)malloc(size*sizeof(long)); startclock = clock(); /* ** Formula used: ** ** Pi/4 = 12*arctan(1/18)+8*arctan(1/57)-5*arctan(1/239) (Gauss) */ NbArctan = 3; m = 12; m = 8; m = -5; p = 18; p = 57; p = 239; SetToInteger (size, Pi, 0); /* ** Computation of Pi/4 = Sum(i) *arctan(1/p[i])] */ for (i=0; i0) Add (size, Pi, arctan); else Sub (size, Pi, arctan); } Mul (size, Pi, 4); endclock = clock (); Print (size, Pi); /* Print out of Pi */ printf ("Computation time is: %9.2f seconds\n", (float)(endclock-startclock)/(float)CLOCKS_PER_SEC); free (Pi); free (arctan); free (buffer1); free (buffer2); }

Конечно, это не самые эффективные способы вычисления числа пи. Существует еще громадное количество формул. Например, формула Чудновского (Chudnovsky), разновидности которой используются в Maple. Однако в обычной практике программирования формулы Гаусса вполне хватает, поэтому эти методы не будут описываться в статье. Вряд ли кто-то хочет вычислять миллиарды знаков пи, для которых сложная формула дает большое увеличение скорости.

История числа Пи начинается еще с Древнего Египта и идет параллельно с развитием всей математики. Мы же впервые встречаемся с этой величиной в стенах школы.

Число Пи является, пожалуй, самым загадочным из бесконечного множества других. Ему посвящены стихи, его изображают художники, о нем даже снят фильм. В нашей статье мы рассмотрим историю развития и вычисления, а также области применения константы Пи в нашей жизни.

Число Пи – это математическая константа равная отношению длины окружности к длине ее диаметра. Первоначально оно называлось лудольфово числом, а обозначать его буквой Пи было предложено британским математиком Джонсом в 1706 году. После работ Леонарда Эйлера в 1737 году это обозначение стало общепринятым.

Число Пи является иррациональным, то есть его значение не может быть точно выражено в виде дроби m/n, где m и n - целые числа. Впервые это доказал Иоганн Ламберт в 1761 году.

История развития числа Пи насчитывает уже порядка 4000 лет. Еще древнеегипетским и вавилонским математикам было известно, что отношение длины окружности к диаметру одинаково для любой окружности и значение его равно чуть больше трех.

Архимед предложил математический способ вычисления Пи, в котором он вписывал в окружность и описывал около неё правильные многоугольники. По его расчетам Пи примерно равнялась 22/7 ≈ 3,142857142857143.

Во II веке Чжан Хэн предложил два значения числа Пи: ≈ 3,1724 и ≈ 3,1622.

Индийские математики Ариабхата и Бхаскара нашли приблизительное значение 3,1416.

Самым точным приближением числа Пи на протяжении 900 лет было вычисление китайского математика Цзу Чунчжи, проведенное в 480-х годах. Он вывел, что Пи ≈ 355 / 113 , и показал, что 3,1415926 < Пи < 3,1415927.

До II тысячелетия было вычислено не более 10 цифр числа Пи. Лишь с развитием математического анализа, а особенно с открытием рядов, были осуществлены последующие крупные продвижения в вычислении константы.

В 1400-х годах Мадхава смог вычислить Пи=3,14159265359. Его рекорд удалось побить персидскому математику Аль-Каши в 1424 году. Он в своём труде «Трактат об окружности» привёл 17 цифр числа Пи, 16 из которых оказались верными.

Голландский математик Людольф ван Цейлен дошел в своих вычислениях до 20-ти чисел, отдав на это 10 лет жизни. После его смерти в его записях были обнаружены еще 15 цифр числа Пи. Он завещал, чтобы эти цифры были высечены на его надгробии.

С появлением компьютеров число Пи на сегодняшний день насчитывает несколько триллионов знаков и это не предел. Но, как подмечено в книге «Fractals for the Classroom», при всей важности числа Пи «трудно найти сферы в научных расчетах, где потребовалось бы больше двадцати десятичных знаков».

В нашей жизни число Пи используется во многих научных областях. Физика, электроника, теория вероятностей, химия, строительство, навигация, фармакология - это лишь некоторые из них, которые просто невозможно представить себе без этого загадочного числа.

По материалам сайта Calculator888.ru - Число Пи - значение, история, кто придумал .

Число Пи (обозначается как π) - математическая величина, являющаяся постоянным значением: отношением длины окружности к ее диаметру. Сейчас этот параметр используется во многих отраслях математики и физики: редко можно встретить формулу, в которой нет π. В чем уникальность этого числа и какова его история появления?

Краткая история вычислений π

Ученые древнего Междуречья заметили, что длина окружности относится к ее диаметру как постоянная величина. Проводя простейшие расчеты, они пришли к выводу, что число π примерно равно 3.

В древнем Египте широко известен документ писца Армеса , который предположил, что площадь круга с радиусом r эквивалентна площади квадрата с длиной ребра 8/9 * 2r (8/9 относительно диаметра окружности).

Так как площадь круга S = πr 2 , получаем:

πr 2 = (8/9*2r) 2 = (16/9) 2 * r 2 = 256/81r 2

По этим расчетам число π получалось равным 3,16.

Максимально точно к современному числовому определению π в древности приблизился Архимед . Он анализировал отношения вписанного и описанного 96-угольника в окружность к ее длине и пришел к неравенству вида:

3 (10/71) < π < 3 (1/7)

Значение π получалось равным 22/7.

До середины 17 столетия ученые продолжали предпринимать попытки нахождения точного определения числа π, постоянно увеличивая количество ребер многоугольников. Математик из Голландии Лудольф ван Цейлен потратил на расчеты 10 лет, в результате чего он получил результат с 20 символами после запятой.

Точное аналитическое выражение числа π первым получил Франсуа Виет . Он установил, что площадь круга с диаметром 1 вычисляется по формуле:

S = "1/2√(1/2) * √(1/2+1/2√(1/2)) * √(1/2+1/2√((1/2)+1/2√(1/2)))…"

Известно, что площадь такого круга равна π/4. Преобразовав выражение, ученый установил:

π/2 = 2/√2*2/√(2+√2) * 2/(√((2)+(√((2)+√(2)))))…

Виет вычислил π с 9 корректными символами после запятой.

Ученый из Англии Джон Мэчин в 1706 году вывел значение числа π со 100 символами после запятой. Он воспользовался формулой Лейбница и переписал ее в виде:

π/4 = 4 arctg(1/5) - arctg(1/239)

С появлением компьютерных вычислений появилась возможность получать точные значения числа π с сотнями символов после запятой. Математик из Индии Сриниваса Рамануджан выполнил разложение арктангенса в ряд Тейлора и получил значение π с 600 цифрами.

В 1987 году благодаря расчетам на компьютере братья Чудновские вывели число π с миллионом символов после запятой. В 2009 году ученые из Японии рассчитали на суперкомпьютере π с 2,5 миллионами знаков. В этом же году программист из Франции Фабрису Беллару получил 2 699 999 990 000 символов после запятой, используя обычный компьютер с системой Linux. Его расчеты длились 131 день.

Последний рекорд принадлежит Сингеру Кондо и Александру Йи . Ученые определили значение π с 12,1 триллионами символов после запятой.

Необычные факты о числе π

Существует легенда, что число π использовали в расчетах при постройке Вавилонской башни и храма Соломона. Но неправильные математические вычисления привели к разрушению зданий.

Значение π хотели узаконить на уровне государства. В штате Индиана в 1897 году был подготовлен билль, согласно которому значение π равнялось 3,2. Благодаря своевременному вмешательству нескольких ученых такую ошибку удалось предотвратить.

Шесть девяток, встречающиеся в бесконечном значении числа π носят имя физика из США Ричарда Фейнмана , который изъявил желание выучить все предшествующие им цифры.

Создан специальный клуб последователей числа π. Чтобы вступить в него, нужно выучить как можно больше символов после запятой. Члены клуба полагают, что в значении π находится истина существования Вселенной и смысл бытия.

Разрабатываются механизмы запоминания числа π. Члены клуба придумали принцип запоминания, основанный на соответствии каждой цифры, входящей в π, слову из такого же количества букв. Участники сообщества сочиняют стихи, придуманные согласно этому принципу. Однажды даже был опубликован целый рассказ, включающий 3834 слова, количество букв в которых равнялось цифрам в π.

Люди соревнуются в запоминании символов в π и ставят рекорды. Японец Акира Харагучи выучил более 83000 знаков после запятой числа π. В России максимальный рекорд составляет 2500 знаков и принадлежит жителю Челябинска.

14 марта отмечается день числа π. Физик Ларри Шоу заметил, что написание этой даты (в американской версии - 3.14) аналогично первым трем цифрами числа π.

Особенно этот праздник любим математиками и иными специалистами точных наук. Они расслабляются и веселятся в этот день, а кондитеры выпекают различные изделия в форме π.

В Сиэттле рядом со зданием Музея искусств установили памятник числу π.

Применение числа π

Величина π сейчас используется в самых различных областях современной науки. Это не только отношение длины окружности к ее диаметру, неевклидова геометрия не обходится без π. Эйлер вывел формулу, описывающую связь между π и e:

С применением числа π можно вычислить любую другую константу, например, постоянную тонкой структуры, постоянную золотой пропорции. Область использования π широка:

  • Геометрия.
  • Ядерная физика.
  • Теория относительности.
  • Физика космоса.
  • Квантовая механика.

Ученые выяснили, что в расшифрованном ДНК человека число π определяет структуру макромолекулы. Это произвело фурор. Руководитель исследования, доктор Чарльз Кэнтор , отметил: «Это феноменально, число π встречается повсюду, и при этом является неизменной величиной».

Формулы с числом π

Существует много формул для вычисления числа π.

Формула Валлиса:

2/1 * 2/3 * 4/3 * 4/5 * 6/5 * 6/7 * 8/7 * 8/9… = π/2

Она активно используется в теоретических расчетах, поскольку такое медленно сходящееся произведение непригодно для практического применения. С помощью формулы Валлиса получают тождество Стирлинга.

Чему равно число Пи мы знаем и помним со школы. Оно равно 3.1415926 и так далее… Обычному человеку достаточно знать, что это число получается, если разделить длину окружности на ее диаметр. Но многим известно, что число Пи возникает в неожиданных областях не только математики и геометрии, но и в физике. Ну а если вникнуть в подробности природы этого числа, то можно заметить много удивительного среди бесконечного ряда цифр. Возможно ли, что Пи скрывает самые сокровенные тайны Вселенной?

Бесконечное число

Само число Пи возникает в нашем мире как длина окружности, диаметр которой равен единице. Но, несмотря на то, что отрезок равный Пи вполне себе конечен, число Пи начинается, как 3.1415926 и уходит в бесконечность рядами цифр, которые никогда не повторяются. Первый удивительный факт состоит в том, что это число, используемое в геометрии, нельзя выразить в виде дроби из целых чисел. Иначе говоря, вы не сможете его записать отношением двух чисел a/b. Кроме этого число Пи трансцендентное. Это означает, что нет такого уравнения (многочлена) с целыми коэффициентами, решением которого было бы число Пи.

То, что число Пи трансцендентно, доказал в 1882 году немецкий математик фон Линдеман. Именно это доказательство стало ответом на вопрос, можно ли с помощью циркуля и линейки нарисовать квадрат, у которого площадь равна площади заданного круга. Эта задача известна как поиск квадратуры круга, волновавший человечество с древнейших времен. Казалось, что эта задача имеет простое решение и вот-вот будет раскрыта. Но именно непостижимое свойство числа Пи показало, что у задачи квадратуры круга решения не существует.

В течение как минимум четырех с половиной тысячелетий человечество пыталось получить все более точное значение числа Пи. Например, В Библии в Третьей Книги Царств (7:23) число Пи принимается равным 3.

Замечательное по точности значение Пи можно обнаружить в пирамидах Гизы: соотношение периметра и высоты пирамид составляет 22/7. Эта дробь дает приближенное значение Пи, равное 3.142… Если, конечно, египтяне не задали такое соотношение случайно. Это же значение уже применительно к расчету числа Пи получил в III веке до нашей эры великий Архимед.

В папирусе Ахмеса, древнеегипетском учебнике по математике, который датируется 1650 годом до нашей эры, число Пи рассчитано как 3.160493827.

В древнеиндийских текстах примерно IX века до нашей эры наиболее точное значение было выражено числом 339/108, которое равнялось 3,1388…

После Архимеда почти две тысячи лет люди пытались найти способы рассчитать число Пи. Среди них были как известные, так и неизвестные математики. Например, римский архитектор Марк Витрувий Поллион, египетский астроном Клавдий Птолемей, китайский математик Лю Хуэй, индийский мудрец Ариабхата, средневековый математик Леонардо Пизанский, известный как Фибоначчи, арабский ученый Аль-Хорезми, от чьего имени появилось слово «алгоритм». Все они и множество других людей искали наиболее точные методики расчета Пи, но вплоть до 15 века никогда не получали больше чем 10 цифр после запятой в связи со сложностью расчетов.

Наконец, в 1400 году индийский математик Мадхава из Сангамаграма рассчитал Пи с точностью до 13 знаков (хотя в двух последних все-таки ошибся).

Количество знаков

В 17 веке Лейбниц и Ньютон открыли анализ бесконечно малых величин, который позволил вычислять Пи более прогрессивно – через степенные ряды и интегралы. Сам Ньютон вычислил 16 знаков после запятой, но не упомянул это в своих книгах – об этом стало известно после его смерти. Ньютон утверждал, что занимался расчетом Пи исключительно от скуки.

Примерно в то же время подтянулись и другие менее известные математики, предложившие новые формулы расчета числа Пи через тригонометрические функции.

Например, вот по какой формуле рассчитывал Пи преподаватель астрономии Джон Мэчин в 1706 году: PI / 4 = 4arctg(1/5) – arctg(1/239). С помощью методов анализа Мэчин вывел из этой формулы число Пи с сотней знаков после запятой.

Кстати, в том же 1706 году число Пи получило официальное обозначение в виде греческой буквы: его в своем труде по математике использовал Уильям Джонс, взяв первую букву греческого слова «периферия», что означает «окружность». Родившийся в 1707 великий Леонард Эйлер популяризовал это обозначение, нынче известное любому школьнику.

До эры компьютеров математики занимались тем, чтобы рассчитать как можно больше знаков. В связи с этим порой возникали курьезы. Математик-любитель У. Шенкс в 1875 году рассчитал 707 знаков числа Пи. Эти семь сотен знаков увековечили на стене Дворца Открытий в Париже в 1937 году. Однако спустя девять лет наблюдательными математиками было обнаружено, что правильно вычислены лишь первые 527 знаков. Музею пришлось понести приличные расходы, чтобы исправить ошибку – сейчас все цифры верные.

Когда появились компьютеры, количество цифр числа Пи стало исчисляться совершенно невообразимыми порядками.

Один из первых электронных компьютеров ENIAC, созданный в 1946 году, имевший огромные размеры, и выделявший столько тепла, что помещение прогревалось до 50 градусов по Цельсию, вычислил первые 2037 знаков числа Пи. Этот расчет занял у машины 70 часов.

По мере совершенствования компьютеров наше знание числа Пи все дальше и дальше уходило в бесконечность. В 1958 году было рассчитано 10 тысяч знаков числа. В 1987 году японцы высчитали 10 013 395 знаков. В 2011 японский исследователь Сигеру Хондо превысил рубеж в 10 триллионов знаков.

Где еще можно встретить Пи?

Итак, зачастую наши знания о числе Пи остаются на школьном уровне, и мы точно знаем, что это число незаменимо в первую очередь в геометрии.

Помимо формул длины и площади окружности число Пи используется в формулах эллипсов, сфер, конусов, цилиндров, эллипсоидов и так далее: где-то формулы простые и легко запоминающиеся, а где-то содержат очень сложные интегралы.

Затем мы можем встретить число Пи в математических формулах, там, где, на первый взгляд геометрии и не видно. Например, неопределенный интеграл от 1/(1-x^2) равен Пи.

Пи часто используется в анализе рядов. Для примера приведем простой ряд, который сходится к числу Пи:

1/1 – 1/3 + 1/5 – 1/7 + 1/9 — …. = PI/4

Среди рядов число Пи наиболее неожиданно появляется в известной дзета-функции Римана. Рассказать про нее в двух словах не получится, скажем лишь, что когда-нибудь число Пи поможет найти формулу расчета простых чисел.

И совершенно удивительно: Пи появляется в двух самых красивых «королевских» формулах математики – формуле Стирлинга (которая помогает найти приблизительное значение факториала и гамма-функции) и формуле Эйлера (которая связывает аж целых пять математических констант).

Однако самое неожиданное открытие ожидало математиков в теории вероятности. Там тоже присутствует число Пи.

Например, вероятность того, что два числа окажутся взаимно простыми, равна 6/PI^2.

Пи появляется в задаче Бюффона о бросании иглы, сформулированной в 18 веке: какова вероятность того, что брошенная на расчерченный лист бумаги игла пересечет одну из линий. Если длина иглы L, а расстояние между линиями L, и r > L то мы можем приблизительно рассчитать значение числа Пи по формуле вероятности 2L/rPI. Только представьте – мы можем получить Пи из случайных событий. И между прочим Пи присутствует в нормальном распределении вероятностей, появляется в уравнении знаменитой кривой Гаусса. Значит ли это, что число Пи еще более фундаментально, чем просто отношение длины окружности к диаметру?

Мы можем встретить Пи и в физике. Пи появляется в законе Кулона, который описывает силу взаимодействия между двумя зарядами, в третьем законе Кеплера, который показывает период обращения планеты вокруг Солнца, встречается даже в расположении электронных орбиталей атома водорода. И что опять же самое невероятное – число Пи прячется в формуле принципа неопределенности Гейзенберга – фундаментального закона квантовой физики.

Тайны числа Пи

В романе Карла Сагана «Контакт», по которому снят одноименный фильм, инопланетяне сообщают героине, что среди знаков Пи содержится тайное послание от Бога. С некоторой позиции цифры в числе перестают быть случайными и представляют себе код, в котором записаны все секреты Мироздания.

Этот роман на самом деле отразил загадку, занимающую умы математиков всей планеты: является ли число Пи нормальным числом, в котором цифры разбросаны с одинаковой частотой, или с этим числом что-то не так. И хотя ученые склоняются к первому варианту (но не могут доказать), число Пи выглядит очень загадочно. Один японец как то подсчитал, сколько раз встречаются числа от 0 до 9 в первом триллионе знаков Пи. И увидел, что числа 2, 4 и 8 встречаются чаще, чем остальные. Это может быть одним из намеков на то, что Пи не совсем нормальное, и цифры в нем действительно не случайны.

Вспомним всё, что мы прочли выше, и спросим себя, какое еще иррациональное и трансцендентное число так часто встречается в реальном мире?

А в запасе имеются еще странности. Например, сумма первых двадцати цифр Пи равна 20, а сумма первых 144 цифр равна «числу зверя» 666.

Главный герой американского сериала «Подозреваемый» профессор Финч рассказывал студентам, что в силу бесконечности числа Пи в нем могут встретиться любые комбинации цифр, начиная от цифр даты вашего рождения до более сложных чисел. Например, на 762-ой позиции находится последовательность из шести девяток. Эта позиция называется точкой Фейнмана в честь известного физика, который заметил это интересное сочетание.

Нам известно также, что число Пи содержит последовательность 0123456789, но находится она на 17 387 594 880-й цифре.

Все это означает, что в бесконечности числа Пи можно обнаружить не только интересные сочетания цифр, но и закодированный текст «Войны и Мира», Библии и даже Главную Тайну Мироздания, если таковая существует.

Кстати, о Библии. Известный популяризатор математики Мартин Гарднер в 1966 году заявил, что миллионным знаком числа Пи (на тот момент еще неизвестным) будет число 5. Свои расчеты он объяснил тем, что в англоязычной версии Библии, в 3-й книге, 14-й главе, 16-м стихе (3-14-16) седьмое слово содержит пять букв. Миллионную цифру получили спустя восемь лет. Это было число пять.

Стоит ли после этого утверждать, что число Пи случайно?

Сегодня день рождения числа Пи, который, по инициативе американских математиков, отмечается 14 марта в 1 час и 59 минут пополудни. Связано это с более точным значением числа Пи: все мы привыкли считать эту константу как 3,14, но число можно продолжить так: 3, 14159... Переводя это в календарную дату, получаем 03.14, 1:59.

Фото: АиФ/ Надежда Уварова

Профессор кафедры математического и функционального анализа Южно-Уральского государственного университета Владимир Заляпин говорит, что «днём числа Пи» всё же следует считать 22 июля, потому что в европейском формате дат этот день записывается как 22/7, а значение этой дроби приблизительно равно значению Пи.

«История числа, дающего отношение длины окружности к диаметру окружности, уходит в далёкую древность, — рассказывает Заляпин. — Уже шумеры и вавилоняне знали, что это это отношение не зависит от диаметра окружности и является постоянным. Одно из первых упоминаний о числе Пи можно встретить в текстах египетского писца Ахмеса (около 1650 года до н. э.). Древние греки, много позаимствовавшие у египтян, внесли свой вклад в развитие этой загадочной величины. По легенде, Архимед был настолько увлечён расчётами, что не заметил, как римские солдаты взяли его родной город Сиракузы. Когда римский солдат подошёл к нему, Архимед закричал по-гречески: «Не трогай моих кругов!». В ответ солдат заколол его мечом.

Платон получил довольно точное значение числа Пи для своего времени — 3,146. Лудольф ванн Цейлен провёл большую часть своей жизни над расчётами первых 36 цифр после запятой числа Пи, и они были выгравированы на его надгробной плите после смерти».

Иррациональное и ненормальное

По словам профессора, во все времена погоня за вычислением новых десятичных знаков обуславливалась желанием получить точное значение этого числа. Предполагалось, что число Пи рациональное и, следовательно, может быть выражено простой дробью. А это в корне неверно!

Число Пи популярно ещё и потому, что оно — мистическое. С древних времён существовала религия почитателей константы. Помимо традиционного значения Пи — математической константы (3,1415...), выражающей отношение длины окружности к её диаметру, есть масса других значений цифры. Любопытны такие факты. В процессе измерений размеров Великой пирамиды в Гизе оказалось, что она имеет такое же соотношение высоты к периметру своего основания, как радиус окружности к её длине, то есть ½ Пи.

Если рассчитать длину экватора Земли с использованием числа Пи с точностью до девятого знака, ошибка в расчётах составит всего около 6 мм. Тридцати девяти знаков после запятой в числе Пи достаточно для вычисления длины окружности, опоясывающей известные космические объекты во Вселенной, с погрешностью не большей, чем радиус атома водорода!

Изучением Пи занимается в том числе и математический анализ. Фото: АиФ/ Надежда Уварова

Хаос в цифрах

По словам профессора математики, в 1767 году Ламберт установил иррациональность числа Пи, то есть невозможность представить его отношением двух целых. Это означает, что последовательность десятичных знаков числа Пи — это хаос, овеществлённый в цифрах. Иными словами, в «хвосте» десятичных знаков содержится любое число, любая последовательность чисел, любые тексты, которые были, есть и будут, да только извлечь эту информацию не представляется возможным!

«Точное значение числа Пи узнать невозможно, — продолжает Владимир Ильич. — Но попытки эти не оставляются. В 1991 году Чудновские добились новых 2260000000 десятичных знаков константы, а в 1994 году — 4044000000. После этого количество верных знаков числа Пи нарастало лавинообразно».

Мировой рекорд по запоминанию числа Пи у китайца Лю Чао , который сумел запомнить 67890 знаков после запятой без ошибки и воспроизвести их в течение 24 часов и 4 минут.

О «золотом сечении»

Кстати, связь между «пи» и другой удивительной величиной — золотым сечением — на самом деле так и не доказана. Люди давно заметили, что «золотая» пропорция — она же число Фи — и число Пи, делённое на два, различаются между собой меньше, чем на 3% (1,61803398... и 1,57079632...). Однако для математики эти три процента — разница слишком существенная, чтобы считать эти значения тождественными. Точно так же можно сказать, что число Пи и число Фи являются родственниками ещё одной известной постоянной — числа Эйлера, так как корень из него близок к половине числа Пи. Одна вторая Пи — 1, 5708, Фи — 1,6180, корень из Е — 1, 6487.

Это — лишь часть значения Пи. Фото: Скриншот

День рождения Пи

В Южно-Уральском государственном университете день рождения константы отмечают все преподаватели и студенты-математики. Так было всегда — нельзя сказать, что интерес появился лишь в последние годы. Число 3,14 приветствуют даже специальным праздничным концертом!