Реакции катализируемой. Каталитические реакции: определение, описание, примеры. Список использованных источников

С. И. ЛЕВЧЕНКОВ

ФИЗИЧЕСКАЯ И КОЛЛОИДНАЯ ХИМИЯ

Конспект лекций для студентов биофака ЮФУ (РГУ)

2.3 КАТАЛИТИЧЕСКИЕ ПРОЦЕССЫ

Скорость химической реакции при данной температуре определяется скоростью образования активированного комплекса, которая, в свою очередь, зависит от величины энергии активации. Во многих химических реакциях в структуру активированного комплекса могут входить вещества, стехиометрически не являющиеся реагентами; очевидно, что в этом случае изменяется и величина энергии активации процесса. В случае наличия нескольких переходных состояний реакция будет идти в основном по пути с наименьшим активационным барьером.

Катализ – явление изменения скорости химической реакции в присутствии веществ, состояние и количество которых после реакции остаются неизменными.

Различают положительный и отрицательный катализ (соответственно увеличение и уменьшение скорости реакции), хотя часто под термином "катализ" подразумевают только положительный катализ; отрицательный катализ называют ингибированием .

Вещество, входящее в структуру активированного комплекса, но стехиометрически не являющееся реагентом, называется катализатором. Для всех катализаторов характерны такие общие свойства, как специфичность и селективность действия.

Специфичность катализатора заключается в его способности ускорять только одну реакцию или группу однотипных реакций и не влиять на скорость других реакций. Так, например, многие переходные металлы (платина, медь, никель, железо и т.д.) являются катализаторами для процессов гидрирования; оксид алюминия катализирует реакции гидратации и т.д.

Селективность катализатора – способность ускорять одну из возможных при данных условиях параллельных реакций. Благодаря этому можно, применяя различные катализаторы, из одних и тех же исходных веществ получать различные продукты:

: СО + Н 2 ––> СН 3 ОН

: С 2 Н 5 ОН ––> С 2 Н 4 + Н 2 О

: СО + Н 2 ––> СН 4 + Н 2 О

: С 2 Н 5 ОН ––> СН 3 СНО + Н 2

Причиной увеличения скорости реакции при положительном катализе является уменьшение энергии активации при протекании реакции через активированный комплекс с участием катализатора (рис. 2.8).

Поскольку, согласно уравнению Аррениуса, константа скорости химической реакции находится в экспоненциальной зависимости от величины энергии активации, уменьшение последней вызывает значительное увеличение константы скорости. Действительно, если предположить, что предэкспоненциальные множители в уравнении Аррениуса (II.32) для каталитической и некаталитической реакций близки, то для отношения констант скорости можно записать:

Если ΔE A = –50 кДж/моль, то отношение констант скоростей составит 2,7·10 6 раз (действительно, на практике такое уменьшение E A увеличивает скорость реакции приблизительно в 10 5 раз).

Необходимо отметить, что наличие катализатора не влияет на величину изменения термодинамического потенциала в результате процесса и, следовательно, никакой катализатор не может сделать возможным самопроизвольное протекание термодинамически невозможного процесса (процесса, ΔG (ΔF) которого больше нуля). Катализатор не изменяет величину константы равновесия для обратимых реакций; влияние катализатора в этом случае заключается только в ускорении достижения равновесного состояния.

В зависимости от фазового состояния реагентов и катализатора различают гомогенный и гетерогенный катализ.

Рис. 2.8 Энергетическая диаграмма химической реакции без катализатора (1)
и в присутствии катализатора (2).

2.3.1 Гомогенный катализ.

Гомогенный катализ – каталитические реакции, в которых реагенты и катализатор находятся в одной фазе. В случае гомогенно-каталитических процессов катализатор образует с реагентами промежуточные реакционноспособные продукты. Рассмотрим некоторую реакцию

А + В ––> С

В присутствии катализатора осуществляются две быстро протекающие стадии, в результате которых образуются частицы промежуточного соединения АК и затем (через активированный комплекс АВК #) конечный продукт реакции с регенерацией катализатора:

А + К ––> АК

АК + В ––> С + К

Примером такого процесса может служить реакция разложения ацетальдегида, энергия активации которой E A = 190 кДж/моль:

СН 3 СНО ––> СН 4 + СО

В присутствии паров йода этот процесс протекает в две стадии:

СН 3 СНО + I 2 ––> СН 3 I + НI + СО

СН 3 I + НI ––> СН 4 + I 2

Уменьшение энергии активации этой реакции в присутствии катализатора составляет 54 кДж/моль; константа скорости реакции при этом увеличивается приблизительно в 105 раз. Наиболее распространенным типом гомогенного катализа является кислотный катализ, при котором в роли катализатора выступают ионы водорода Н + .

2.3.2 Автокатализ.

Автокатализ – процесс каталитического ускорения химической реакции одним из её продуктов. В качестве примера можно привести катализируемую ионами водорода реакцию гидролиза сложных эфиров. Образующаяся при гидролизе кислота диссоциирует с образованием протонов, которые ускоряют реакцию гидролиза. Особенность автокаталитической реакции состоит в том, что данная реакция протекает с постоянным возрастанием концентрации катализатора. Поэтому в начальный период реакции скорость её возрастает, а на последующих стадиях в результате убыли концентрации реагентов скорость начинает уменьшаться; кинетическая кривая продукта автокаталитической реакции имеет характерный S-образный вид (рис. 2.9).

Рис. 2.9 Кинетическая кривая продукта автокаталитической реакции

2.3.3 Гетерогенный катализ.

Гетерогенный катализ – каталитические реакции, идущие на поверхности раздела фаз, образуемых катализатором и реагирующими веществами. Механизм гетерогенно-каталитических процессов значительно более сложен, чем в случае гомогенного катализа. В каждой гетерогенно-каталитической реакции можно выделить как минимум шесть стадий:

1. Диффузия исходных веществ к поверхности катализатора.

2. Адсорбция исходных веществ на поверхности с образованием некоторого промежуточного соединения:

А + В + К ––> АВК

3. Активация адсорбированного состояния (необходимая для этого энергия есть истинная энергия активации процесса):

АВК ––> АВК #

4. Распад активированного комплекса с образованием адсорбированных продуктов реакции:

АВК # ––> СDК

5. Десорбция продуктов реакции с поверхности катализатора.

СDК ––> С + D + К

6. Диффузия продуктов реакции от поверхности катализатора.

Специфической особенностью гетерокаталитических процессов является способность катализатора к промотированию и отравлению.

Промотирование – увеличение активности катализатора в присутствии веществ, которые сами не являются катализаторами данного процесса (промоторов). Например, для катализируемой металлическим никелем реакции

СО + Н 2 ––> СН 4 + Н 2 О

введение в никелевый катализатор небольшой примеси церия приводит к резкому возрастанию активности катализатора.

Отравление – резкое снижение активности катализатора в присутствии некоторых веществ (т. н. каталитических ядов). Например, для реакции синтеза аммиака (катализатор – губчатое железо), присутствие в реакционной смеси соединений кислорода или серы вызывает резкое снижение активности железного катализатора; в то же время способность катализатора адсорбировать исходные вещества снижается очень незначительно.

Для объяснения этих особенностей гетерогенно-каталитических процессов Г. Тэйлором было высказано следующее предположение: каталитически активной является не вся поверхность катализатора, а лишь некоторые её участки – т.н. активные центры , которыми могут являться различные дефекты кристаллической структуры катализатора (например, выступы либо впадины на поверхности катализатора). В настоящее время нет единой теории гетерогенного катализа. Для металлических катализаторов была разработана теория мультиплетов . Основные положения мультиплетной теории состоят в следующем:

1. Активный центр катализатора представляет собой совокупность определенного числа адсорбционных центров, расположенных на поверхности катализатора в геометрическом соответствии со строением молекулы, претерпевающей превращение.

2. При адсорбции реагирующих молекул на активном центре образуется мультиплетный комплекс, в результате чего происходит перераспределение связей, приводящее к образованию продуктов реакции.

Теорию мультиплетов называют иногда теорией геометрического подобия активного центра и реагирующих молекул. Для различных реакций число адсорбционных центров (каждый из которых отождествляется с атомом металла) в активном центре различно – 2, 3, 4 и т.д. Подобные активные центры называются соответственно дублет, триплет, квадруплет и т.д. (в общем случае мультиплет, чему и обязана теория своим названием).

Например, согласно теории мультиплетов, дегидрирование предельных одноатомных спиртов происходит на дублете, а дегидрирование циклогексана – на секстете (рис. 2.10 – 2.11); теория мультиплетов позволила связать каталитическую активность металлов с величиной их атомного радиуса.

Рис. 2.10 Дегидрирование спиртов на дублете

Рис. 2.11 Дегидрирование циклогексана на секстете

2.3.4 Ферментативный катализ.

Ферментативный катализ – каталитические реакции, протекающие с участием ферментов – биологических катализаторов белковой природы. Ферментативный катализ имеет две характерные особенности:

1. Высокая активность , на несколько порядков превышающая активность неорганических катализаторов, что объясняется очень значительным снижением энергии активации процесса ферментами. Так, константа скорости реакции разложения перекиси водорода, катализируемой ионами Fе 2+ , составляет 56 с -1 ; константа скорости этой же реакции, катализируемой ферментом каталазой, равна 3.5·10 7 , т.е. реакция в присутствии фермента протекает в миллион раз быстрее (энергии активации процессов составляют соответственно 42 и 7.1 кДж/моль). Константы скорости гидролиза мочевины в присутствии кислоты и уреазы различаются на тринадцать порядков, составляя 7.4·10 -7 и 5·10 6 с -1 (величина энергии активации составляет соответственно 103 и 28 кДж/моль).

2. Высокая специфичность . Например, амилаза катализирует процесс расщепления крахмала, представляющего собой цепь одинаковых глюкозных звеньев, но не катализирует гидролиз сахарозы, молекула которой составлена из глюкозного и фруктозного фрагментов.

Согласно общепринятым представлениям о механизме ферментативного катализа, субстрат S и фермент F находятся в равновесии с очень быстро образующимся фермент-субстратным комплексом FS, который сравнительно медленно распадается на продукт реакции P с выделением свободного фермента; т.о., стадия распада фермент-субстратного комплекса на продукты реакции является скоростьопределяющей (лимитирующей).

F + S <––> FS ––> F + P

Исследование зависимости скорости ферментативной реакции от концентрации субстрата при неизменной концентрации фермента показали, что с увеличением концентрации субстрата скорость реакции сначала увеличивается, а затем перестает изменяться (рис. 2.12) и зависимость скорости реакции от концентрации субстрата описывается следующим уравнением:

(II.45)

В данной статьей будут рассмотрены каталитические реакции. Читателя ознакомят с общим представлением о катализаторах и их воздействии на систему, а также будут описаны виды реакций, особенности их протекания и многое другое.

Введение в катализ

Прежде чем ознакомиться с каталитическими реакциями, стоит узнать, что же такое - катализ.

Это выборочный процесс ускорения, определенного термодинамически разрешенного направления реакции, что подвергается воздействию катализатора. Он многократно включается во взаимодействие химической природы, а влияние оказывает на участников реакции. В конце любого цикла промежуточного характера катализатор возобновляет свою изначальную форму. Введено в оборот понятие катализатора было Я. Барцелиусом и Йенсом в 1835.

Общие сведения

Катализация широко распространяется в природе и повсеместно используется человеком в технологической промышленности. Преобладающее количество всех используемых в промышленности реакций каталитические. Существует понятие об автокатализе - явлении, при котором ускоритель выступает в качестве продукта реакции либо входит в состав исходных соединений.

Все виды химического взаимодействия реагирующих веществ делятся на каталитические и некаталитические реакции. Ускорение реакций с участием катализаторов называется положительным катализом. Замедление скорости взаимодействия протекает при участии ингибиторов. Реакции носят отрицательно-каталитический характер.

Каталитическая реакция - это не только способ увеличения производительной мощи, но и возможность, повышающая качество получаемого продукта. Это обусловлено способностью специально подобранного вещества ускорить основную реакцию и замедлить скорость параллельно идущих.

Каталитические реакции также понижают затраты энергии, что расходует аппаратура. Это связано с тем, что ускорение позволяет протекать процессу в условиях более низкой температуры, которая требовалась бы без его наличия.

Примером каталитической реакции может служить получение на производстве таких ценных вещей, как: азотная кислота, водород, аммиак и т. д. Наибольшее применение эти процессы находят в производстве альдегидов, фенола, различных пластмасс, смол и каучуков и т. д.

Разнообразие реакций

Суть катализа лежит в переведении механизма протекания реакции на самый выгодный вариант. Это становится возможным благодаря снижению энергии активации.

Катализатор образовывает слабую химическую связь с определенным реагентом молекулы. Это позволяет облегчить протекание реакции с другим реагентом. Вещества, которые относятся к каталитическим, не влияют на смещение химического равновесия, так как действуют обратимо в обоих направлениях.

Катализ делится на два основных типа: гомогенный и гетерогенный. Общей чертой всех взаимодействий первого типа является нахождение катализатора в общей фазе с реактивом самой реакции. Второй тип имеет отличие в этом пункте.

Гомогенные каталитические реакции показывают нам, что ускоритель, вступая во взаимодействие с определенным веществом, образует промежуточное соединение. Это в дальнейшем приведет к снижению количества энергии, необходимого для активации.

Гетерогенный катализ ускоряет процесс. Как правило, протекает на поверхности твердых тел. Вследствие этого, возможности катализатора и его активность определяются величиной поверхности и индивидуальных свойств. Гетерогенно-каталитическая реакция имеет более сложный механизм работы, чем гомогенная. В его механизм включено 5 стадий, каждая из которых может быть обратимой.

На первой стадии начинается диффузия взаимодействующих реагентов к площади твердого вещества, далее происходит адсорбция физического характера и следом хемосорбция. Вследствие этого наступает третья стадия, при которой реакция начинает протекать между молекулами реагирующих веществ. На четвертой стадии наблюдается десорбция продукта. На пятой стадии происходит диффузия конечного вещества в общие потоки с плоскости катализатора.

Каталитические материалы

Существует понятие о носителе катализатора. Он представляет собой материал инертного или малоактивного типа, необходимый для приведения частицы, участвующей в фазе катализа, в стабильное состояние.

Гетерогенное ускорение необходимо для предотвращения процессов спекания и агломерации активных компонентов. В преобладающем ряде случаев количество носителей превышает наличие нанесенного компонента активного типа. К главному списку требований, которыми должен обладать носитель, можно отнести большую площадь и пористость поверхности, стабильность термической природы, инертность и устойчивость к механическому воздействию.

Химическая основа. Химия ускорения протекания взаимодействия между веществами позволяет нам выделить два вида веществ, а именно катализаторы и ингибиторы. Последние, в свою очередь, замедляют скорость реакции. Одной из разновидностей катализаторов являются ферменты.

Катализаторы стехиометрически не вступают в отношения с продуктом самой реакции и в конечном итоге всегда регенерируются. В современности существует множество способов влияния на процесс молекулярной активации. Однако катализ служит основой химического производства.

Природа катализаторов позволяет их разделить на гомогенные, гетерогенные, межфазовые, ферментативные и мицеллярные. Химическая реакция при участии катализатора позволит снизить затраты энергии, необходимой для ее активации. Например, некаталитическое разложение NH3 до азота и водорода потребует около 320 кДж/моль. Эта же реакция, но под воздействием платины, позволит снизить это число до 150 кДж/моль.

Процесс гидрирования

Преобладающее количество реакций с участием катализаторов базируется на активации водородного атома и определенной молекулы, что в дальнейшем приводит к взаимодействию химической природы. Данное явление называют гидрированием. Оно лежит в основе большинства этапов нефтепереработки и создания жидкого горючего из угля. Производство последнего было открыто в Германии, что обусловлено отсутствием месторождений нефти на территории страны. Создание такого топлива называется процессом Бергиуса. Заключается он в прямом соединении водорода и угля. Уголь подвергают нагреванию в условиях определенного давления и наличия водорода. Вследствие этого образуется продукт жидкого типа. Катализаторами выступают оксиды железа. Но иногда используют и вещества на основе таких металлов, как молибден и олово.

Существует и другой способ получения такого же топлива, который называют процессом Фишера-Тропша. Он состоит из двух стадий. На первом этапе уголь подвергают газификации, обрабатывая его взаимодействием паров воды и О 2 . Данная реакция приводит к образованию водородной смеси и оксида углерода. Далее при помощи катализаторов полученную смесь переводят в состояние жидкого топлива.

Взаимосвязь кислотности и каталитических возможностей

Каталитическая реакция - это явление, зависящее от кислотных свойств самого катализатора. В соответствии с определением по Й. Бренстеду, кислота - это вещество, умеющее отдавать протоны. Сильная кислота легко отдаст свой протон в пользование основанию. Г. Льюис определял кислоту как вещество, способное принимать на себя электронные пары от веществ-доноров и образовывать вследствие этого ковалентную связь. Две эти идеи позволили человеку определить суть механизма катализа.

Сила кислоты определяется при помощи наборов оснований, способных изменять свой цвет вследствие присоединения протона. Некоторые каталитические вещества, используемые в промышленности, могут вести себя как чрезвычайно сильные кислоты. Их сила определяет темп протонирования, а потому является очень важной характеристикой.

Кислотная активность катализатора обусловлена его способностями вступать в реакции с углеводородами, образовывая при этом промежуточный продукт - карбений иона.

Процесс дегидрирования

Каталитической реакцией является также и дегидрирование. Оно нередко используется в разных промышленных отраслях. Несмотря на то что каталитические процессы, основанные на дегидрировании, используются реже, чем реакции гидрирования, тем не менее они занимают важное место в человеческой деятельности. Примером каталитической реакции такого типа может послужить получение стирола - важного мономера. Для начала происходит дегидрирование этилбензола с участием веществ, содержащих оксид железа. Человек часто использует данное явление для дегидрирования многих алканов.

Двойное действие

Существуют катализаторы двойного действия, способные ускорять реакцию сразу двух типов. Вследствие чего приводят к лучшим результатам, в сравнении с пропусканием реагентов поочередно сквозь 2 реактора, содержащих только по одному типу катализаторов. Это обусловлено тем, что активный центр ускорителя с двойным действием пребывает в близком положении с другим таким же центром, а также с промежуточным продуктом. К хорошему результату приводит, например, объединение катализаторов, активирующих водород, с веществом, позволяющим протекать процессу изомеризации углеводорода. Активация часто осуществляется металлами, а изомеризация протекает при участии кислот.

Специфика основных каталитических реакций

Способности и эффективность катализатора обусловлены также его основными свойствами. Ярким примером может служить гидроксид натрия, который применяют в ходе гидролиза жиров для получения мыла. Такие типы катализаторов также используются в ходе производства пенопласта и пластинок из полиуретана. Уретан получают в ходе взаимодействия спирта и изоцианата. Ускорение реакции происходит при воздействии определенного основного амина. Основание присоединяется к атому углерода, содержащемуся в изоцианатовой молекуле. Вследствие этого атом азота становится отрицательно заряженным. Это приводит к повышению активности в отношении к спирту.

Полимеризация стереоспецифического характера

Важное историческое значение в истории изучения катализа имеет открытие полимеризации олефина с последующим получением стереорегулярных полимерных веществ. Открытие катализаторов, для которых характерна стереоспецифическая полимеризация, принадлежит К. Циглеру. Работы по получению полимеров, проведенные Циглером, заинтересовали Дж. Натта, который выдвинул предположение о том, что полимерная уникальность должна определяться его стереорегулярностью. Большое количество экспериментов с участием рентгеновских лучей, подвергающихся дифракции, доказали, что полимер, полученный из пропилена под воздействием катализатора Циглера, является высококристалличным. Эффект действия носит стереорегулярный характер.

Реакции подобного типа проходят на плоскости твердого катализатора, содержащего в себе металлы переходного типа, например Ti, Cr, V, Zr. Они должны находиться в неполном окислении. Уравнение каталитической реакции между взаимодействующими TiCl 4 и Al(C 2 H 5) 3 , в ходе которой образуется осадок, служит ярким тому примером. Здесь титан восстановлен до 3-хвалентного состояния. Такой вид активной системы дает возможность полимеризировать пропилен в обычных условиях температуры и давления.

Окисление в каталитических реакция

Каталитические реакции окисления обширно используются человеком, что обусловлено способностью определенных веществ регулировать скорость протекания самой реакции. Некоторые случаи требуют полного окисления, например нейтрализация CO и загрязнений, содержащих углеводороды. Однако подавляющее количество реакций требует неполного окисления. Это необходимо для получения в промышленности ценных, но промежуточных продуктов, что могут содержать определенную и важную промежуточную группу: COOH, CN, CHO, C-CO. При этом человек использует как гетерогенные, так и моногенные виды катализаторов.

Среди всех веществ, способных ускорять протекание химических реакций, важное место отведено оксидам. Преимущественно в твердом состоянии. Протекание окисления делится на 2 этапа. На первой стадии оксид кислорода захватывается углеводородной молекулой адсорбированного оксида. Вследствие этого происходит восстановление оксида и окисление углеводорода. Возобновленный оксид вступает во взаимодействие с О 2 и возвращается к изначальному состоянию.

Большую часть процессов, лежащих в основе химической технологии, составляют каталитические реакции. Это связано с тем, что при введении катализатора скорость взаимодействия веществ существенно увеличивается. При этом производителям удается сократить расходы или же получить большее количество продуктов реакции за тот же период времени. Именно поэтому изучению катализа уделяется много внимания при подготовке технологов. Однако это явление играет важную роль и в природе. Так, особые вещества регулируют протекание биохимических реакций в живых организмах, влияя тем самым на обмен веществ.

Понятие катализа

Суть этого химического явления заключается в регулировании скорости превращения веществ с использованием особых реагентов, способных замедлять или ускорять этот процесс. При этом говорят о положительном или отрицательном катализе. Существует также явление автокатализа, когда на скорость реакции влияет один из промежуточных продуктов химической реакции. Каталитические процессы разнообразны, отличаются они механизмами, агрегатным состоянием соединений и направлением.

Вещества, которые замедляют химические взаимодействия, называют ингибиторами, а ускоряющие каталитические реакции - катализаторами. И те, и другие изменяют скорость реакции путем многократного промежуточного взаимодействия с одним или несколькими ее участниками. При этом они не входят в состав продуктов и восстанавливаются после окончания цикла превращения веществ. Поэтому участие катализатора не отражают в уравнении реакции стехиометрически, а лишь указывают как условие взаимодействия веществ.

Виды каталитических реакций

По агрегатному состоянию веществ, принимающих участие в химической реакции, различают:

  • гомогенные реакции - реагирующие вещества, продукты и катализатор находятся в одном агрегатном состоянии (фазе), при этом молекулы веществ равномерно распределены по всему объему;
  • межфазные каталитические реакции - происходят на границе раздела несмешивающихся жидкостей, а роль катализатора сводится к переносу реагентов через нее;
  • гетерогенные каталитические реакции - в них катализатор имеет отличное от реагентов агрегатное состояние, а сама она осуществляется на поверхности раздела фаз;
  • гетерогенно-гомогенные реакции - инициируются на поверхности раздела с катализатором, а продолжаются в реакционном объеме;
  • микрогетерогенные реакции - мелкие частички твердого катализатора образуют мицеллы по всему объему жидкой фазы.

Существует также окислительно-восстановительный катализ, сопровождающийся изменением степени окисления катализатора при взаимодействии с реагентами. Такие превращения называют каталитическими реакциями окисления и восстановления. Наиболее распространено в химическом производстве окисление диоксида серы до триоксида при получении серной кислоты.

Виды катализаторов

По агрегатному состоянию катализаторы бывают жидкие (H 2 SO 4 , Н 3 РО 4), твердые (Pt, V 2 О 5 , Al 2 О 3) и газообразные (BF 3).

По типу вещества катализаторы классифицируют на:

  • металлы - могут быть чистыми, сплавами, цельными или нанесенными на пористую основу (Fe, Pt, Ni, Cu);
  • соединения металлов типа М m Э n - наиболее распространены оксиды MgO, Al 2 О 3 , МоО 3 и др.;
  • кислоты и основания - используются для кислотно-основных каталитических реакций, это могут быть кислоты Льюиса, Бренстеда и др.;
  • комплексы металлов - в эту группу включают также соли переходных металлов, например PdCl 2 , Ni(СО) 4 ;
  • ферменты (они же энзимы) - биокатализаторы, ускоряющие реакции, идущие в живых организмах.

По специфике электронного строения различают d-катализаторы, имеющие d-электроны и d-орбитали, а также s,р-катализаторы, центром которых является элемент с валентными s и р-электронами.

Свойства катализаторов

Для эффективного использования к ним применяется довольно обширный список требований, изменяющийся для конкретного процесса. Но наиболее значимы следующие два свойства катализаторов:

  • Специфичность, заключается в способности катализаторов влиять только на одну реакцию или ряд однотипных превращений и не воздействовать на скорость других. Так, платина чаще всего используется в органических реакциях гидрирования.
  • Селективность, характеризуется способностью ускорять одну из нескольких возможных параллельно протекающих реакций, тем самым увеличивать выход наиболее важного продукта.

Скорость каталитической реакции

Причиной ускорения взаимодействия веществ является образование активного комплекса с катализатором, приводящее к снижению энергии активации.

Согласно основному постулату химической кинетики, скорость любой химической реакции прямо пропорциональна произведению концентраций исходных веществ, которые взяты в степенях, соответствующих их стехиометрических коэффициентам:

v = k ∙ С А х ∙ С В у ∙ С D z ,

где k - константа скорости химической реакции, численно равная скорости этой же реакции, при условии, что концентрации исходных соединений равны 1 моль/л.

По уравнению Аррениуса k зависит от энергии активации:

k = A ∙ exp^(-Е А / RT).

Указанные закономерности справедливы и для каталитических реакций. Это подтверждает и уравнение, для отношения констант скоростей:

k K / k = A К /А ∙ exp^((Е А -Е АК)/RT),

где переменные с индексом К относятся к каталитическим реакциям.

Стадии каталитических реакций

Для гомогенных каталитических реакций достаточно двух основных стадий:

  1. Образование активированного комплекса: А + К ―> АК.
  2. Взаимодействие активированного комплекса с другими исходными веществами: АК + В ―> С + К.

В общем виде записывают уравнение вида А + В ―> С.

Механизм гетерогенных каталитических реакций сложен. Выделяют следующие шесть стадий:

  1. Подведение к поверхности катализатора исходных соединений.
  2. Адсорбция исходных реагентов поверхностью катализатора и образование промежуточного комплекса: А + В + К ―> АВК.
  3. Активация образовавшегося комплекса: ΑВК ―> ΑВК * .
  4. Распад комплексного соединения, при этом образовавшиеся продукты адсорбированы катализатором: ΑВК * ―> CDK.
  5. Десорбция полученных продуктов поверхностью катализатора: CDK ―> С + D + К.
  6. Отвод продуктов от катализатора.

Примеры каталитических реакций

Катализаторы используют не только в химической промышленности. Любой человек в своей повседневной жизни сталкивается с различными каталитическими реакциями. Это, например, использование перекиси водорода при обработке ран. Пероксид водорода при взаимодействии с кровью начинает разлагаться под влиянием :

2Н 2 О 2 ―> О 2 + 2Н 2 О.

В современных автомобилях снабжена особыми каталитическими камерами, способствующими разложению вредных газообразных веществ. Например, платина или родий помогают снижать уровень загрязнения окружающей среды оксидами азота, которые разрушаются с образованием безвредных О 2 и N 2 .

В некоторых зубных пастах содержатся ферменты, инициирующие разложение зубного налета и остатков пищи.

Скорости химических реакций могут резко увеличиваться в присутствии различных веществ, не являющихся реагентами и не входящих в состав продуктов реакции. Это замечательное явление получило название катализ (от греч. «katalysis» - разрушение). Вещество, при наличии которого в смеси увеличивается скорость реакции, называется катализатором. Его количество до и после реакции остается неизменным. Катализаторы не представляют собой какой-то особый класс веществ. В разных реакциях каталитическое действие могут проявить металлы, оксиды, кислоты, соли, комплексные соединения. Химические реакции в живых клетках протекают под контролем каталитических белков, называемых ферментами. Катализ следует рассматривать как истинно химический фактор увеличения скоростей химических реакций, так как катализатор непосредственно участвует в реакции. Катализ часто оказывается более мощным и менее рискованным средством ускорения реакции, чем повышение температуры. Это ярко проявляется на примере химических реакций в живых организмах. Реакции, например гидролиз белков, которые в лабораториях приходится проводить при длительном нагревании до температуры кипения, в процессе пищеварения протекают без нагревания при температуре тела.

Впервые явление катализа наблюдал французский химик Л. Ж. Тенар (1777-1857) в 1818 г. Он обнаружил, что оксиды некоторых металлов при внесении в раствор перекиси водорода вызывают ее разложение. Такой опыт легко воспроизвести, внеся кристаллы перманганата калия в 3%-ный раствор перекиси водорода. Соль КМп0 4 превращается в Мп0 2 , и из раствора под действием оксида быстро выделяется кислород:

Непосредственно действие катализатора на скорость реакции связано с понижением энергии активации. При обычной температуре понижение? а на 20 кДж/моль увеличивает константу скорости приблизительно в 3000 раз. Понижение Е Л может быть и значительно более сильным. Однако понижение энергии активации является внешним проявлением действия катализатора. Реакция характеризуется определенным значением E. v которое может измениться только при изменении самой реакции. Давая те же самые продукты, реакция при участии добавленного вещества идет по иному пути, через другие стадии и с другой энергией активации. Если на этом новом пути энергия активации оказывается ниже и реакция соответственно идет быстрее, то мы говорим, что эго вещество является катализатором.

Катализатор взаимодействует с одним из реагентов, образуя некоторое промежуточное соединение. На одной из последующих стадий реакции катализатор регенерируется - выходит из реакции в первоначальном виде. Реагенты, участвуя в каталитической реакции, продолжают взаимодействовать между собой и по медленному пути без участия катализатора. Поэтому каталитические реакции относятся к разновидности сложных реакций, называемых последовательно-параллельными. На рис. 11.8 показана зависимость константы скорости от концентрации катализатора. График зависимости не проходит через ноль, так как при отсутствии катализатора протекание реакции не прекращается.

Рис. 11.8.

наблюдаемая константа k выражается суммой k u + & к с(К)

Пример 11.5. При температуре -500 °С реакция окисления оксида серы(1У)

являющаяся одной из стадий промышленного получения серной кислоты, идет очень медленно. Дальнейшее повышение температуры неприемлемо, так как равновесие смещается влево (реакция экзотермическая) и выход продукта слишком сильно понижается. Но эта реакция ускоряется различными катализаторами, одним из которых может быть оксид азота(П). Сначала катализатор реагирует с кислородом:

а потом передает атом кислорода оксиду серы(1У):

Так образуется конечный продукт реакции и регенерируется катализатор. Для реакции открылась возможность течения по новому пути, на котором константы скорости значительно возросли:

На приведенной схеме показаны оба пути процесса окисления S0 2 . При отсутствии катализатора реакция идет только по медленному пути, а в присутствии катализатора- по обоим.

Различают два вида катализа - гомогенный и гетерогенный. В первом случае катализатор и реагенты образуют гомогенную систему в виде газовой смеси или раствора. Пример окисления оксида серы - это гомогенный катализ. Скорость гомогенной каталитической реакции зависит как от концентраций реагентов, так и от концентрации катализатора.

При гетерогенном катализе катализатор представляет собой твердое вещество в чистом виде или нанесенное на носитель. Например, платина в качестве катализатора может быть закреплена на асбесте, оксиде алюминия и т.д. Молекулы реагента адсорбируются (поглощаются) из газа или раствора на особых точках поверхности катализатора - активных центрах и при этом активируются. После химического превращения образовавшиеся молекулы продукта десорбируются с поверхности катализатора. На активных центрах повторяются акты превращения частиц. Кроме прочих факторов, скорость гетерогенной каталитической реакции зависит от площади поверхности каталитического материала.

Гетерогенный катализ особенно широко применяется в промышленности. Это объясняется легкостью осуществления непрерывного каталитического процесса при прохождении смеси реагентов через контактный аппарат с катализатором.

Катализаторы действуют избирательно, ускоряя вполне определенный вид реакций или даже отдельную реакцию и не влияя на другие. Это позволяет использовать катализаторы не только для ускорения реакций, но и для целенаправленного превращения исходных веществ в желаемые продукты. Метан и вода при 450 °С на катализаторе Fe 2 0 3 превращаются в углекислый газ и водород:

Те же вещества при 850 °С на поверхности никеля реагируют с образованием оксида углерода(П) и водорода:

Катализ относится к тем областям химии, в которых пока невозможно делать точные теоретические прогнозы. Все промышленные катализаторы для переработки нефтяных продуктов, природного газа, производства аммиака и многие другие разработаны на основе трудоемких и длительных экспериментальных исследований.

Умение управлять скоростями химических процессов имеет неоценимое значение в хозяйственной деятельности человека. При промышленном получении химических продуктов обычно необходимо увеличивать скорости технологических химических процессов, а при хранении продукции требуется уменьшать скорость разложения или воздействия кислорода, воды и т.д. Известны вещества, которые могут замедлять химические реакции. Они называются ингибиторами , или отрицательными катализаторами. Ингибиторы принципиально отличаются от настоящих катализаторов тем, что реагируют с активными частицами (свободными радикалами), которые по тем или иным причинам возникают в веществе или окружающей его среде и вызывают ценные реакции разложения и окисления. Ингибиторы постепенно расходуются, прекращая свое защитное действие. Наиболее важной разновидностью ингибиторов являются антиоксиданты, предохраняющие различные материалы от воздействия кислорода.

Следует напомнить и о том, чего нельзя добиться с помощью катализаторов. Они способны ускорять только самопроизвольные реакции. Если реакция самопроизвольно не идет, то катализатор не сможет ее ускорить. Например, никакой катализатор не может вызвать разложение воды на водород и кислород. Этот процесс можно осуществить только электролизом, затрачивая при этом электрическую работу.

Катализаторы могут активизировать и нежелательные процессы. В последние десятилетия наблюдается постепенное разрушение озонового слоя атмосферы на высоте 20-25 км. Предполагается, что в распаде озона участвуют некоторые вещества, например галогенированные углеводороды, выбрасываемые в атмосферу промышленными предприятиями, а также используемые в бытовых целях.

Одна из наиболее быстро развивающихся в последние годы областей органической химии — реакции, катализируемые переходными металлами . Такие процессы широко применяются и для синтеза гетероциклических соединений, и для их функционализации. Использование процессов, катализируемых переходными металлами, способствовало развитию не только совершенно новых методов, но и позволило усовершенствовать давно известные, повысить селективность и простоту осуществления многих процессов. Палладий — один из наиболее важных и широко применяемых катализаторов, в реакциях различного типа. Никель также используется в качестве катализатора, однако круг реакций, катализируемых никелем, значительно уже.

В целом гетероциклические соединения вступают в реакции, катализируемые палладием, аналогично карбоциклическим. Атомы серы и азота, включённые в цикл, редко препятствуют осуществлению таких (гомогенных) процессов, катализируемых палладием, хотя хорошо известно, что сера- и азотсодержащие молекулы оказывают отравляющее действие на катализаторы гетерогенного гидрирования (металлический палладий на угле).

Процессы, катализируемые палладием, обычно проводят, используя 1-5 мол. % катализатора, и палладиевые активные интермедиаты образуются в низкой концентрации. Такие процессы представляют собой последовательность стадий, каждая из которых связана с участием палладийорганического соединения. Механизм процессов с участием палладийорганических интермедиатов скорее согласованный, чем ионный, и сравнивать такие реакции с близкими, на первый взгляд, процессами «классической» органической химии недопустимо. Для облегчения запоминания таких процессов можно использовать изогнутее стрелки, аналогично тому, как при рассмотрении реакций циклоприсоединения, и именно такое «объяснение» реакций, катализируемых палладием, будет использоваться при их дальнейшем обсуждении.

2012-2019. Химия гетероциклических соединений. Heterocyclic Chemistry.
Правила определения основного гетероцикла: Если циклы имеют разные гетероатомы, то цикл с большим порядковым номером гетероатомов является основным.

В учебном издании, написанном известными английскими учёными, изложены основные теоретические представления о реакционной способности и методах синтеза различных классов гетероциклических соединений и отдельных их представителей; показана роль гетероциклических соединений в химии твёрдого тела, биологических процессах, химии полимеров-полупроводников. Особое внимание уделено освещению последних достижений в этой важной области органической химии, имеющей большое значение в медицинской химии, фармакологии и биохимии. По полноте и широте представленного материала может использоваться как справочно-энциклопедическое издание.