Камушки серы. Камни и минералы и самоцветные камни мира Самородные элементы: Сера. Происхождение и нахождение в природе

Сера - элемент 16-й группы (по устаревшей классификации - главной подгруппы VI группы), третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 16.

Сера проявляет неметаллические свойства. Обозначается символом S (лат. sulfur). В водородных и кислородных соединениях находится в составе различных ионов, образует многие кислоты и соли. Многие серосодержащие соли малорастворимы в воде.

Сера является шестнадцатым по химической распространённости элементом в земной коре. Встречается в свободном (самородном) состоянии и связанном виде.

Важнейшие природные соединения серы: FeS2 - железный колчедан или пирит, ZnS - цинковая обманка или сфалерит (вюрцит), PbS - свинцовый блеск или галенит, HgS - киноварь, Sb2S3 - антимонит. Кроме того, сера присутствует в нефти, природном угле, природных газах и сланцах.

Сера - шестой элемент по содержанию в природных водах, встречается в основном в виде сульфат-иона и обуславливает «постоянную» жёсткость пресной воды.

Сера - жизненно важный элемент для высших организмов, составная часть многих белков, концентрируется в волосах.

Наибольший интерес представляет самородная Сера - красивый минерал, чаще всего ярко-желтого цвета, нередко образующий хорошо ограненные формы.

Самородная сера бывает непрозрачной до прозрачной (редко). В прозрачном виде может обладать высокой игрой цвета - дисперсией (однако это характерно только для образцов из Самары).

Изредка сера гранится для коллекционеров. Для этого подходит материал с двух месторождений: из-под Самары и с Сицилии. Огранка прозрачных кристаллов серы - труднейший экзамен для проверки искусства огранщика, поскольку сера настолько хрупка и чувствительна к нагреванию, что достаточно тепла пальцев, чтобы привести кристалл к растрескиванию.

Образцы серы следует хранить в сухом месте.

Лучшая в мире сера - из-под Самары. Ей существенно уступает сера с Сицилии (Италия). Красноватые, розоватые или оранжево-розовые кристаллы с небольшими прозрачными участками, пригодными для огранки камней в несколько каратов, встречаются также на горе Сент-Илер (пров. Квебек, Канада). По-видимому, самарская сера - самая прозрачная в мире.

В СНГ самородная сера встречается на Украине и в Туркмении.

Магические свойства серы

Как считают психологи и биоэнергетики, это цвет оптимизма и конструктивности, он дает отдых и способствует положительным эмоциям.

Древний человек был хорошо знаком с натечными и массивными образованиями серы возле действующих вулканов (это результат вулканических возгонов - эманации).

Он весьма охотно селился возле вулканов, так как почва здесь особенно плодородна. Сам вулкан издревле считался преддверием ада, как и продукты его извержения - его производными.

Поэтому серу широко использовали в древности заклинатели, гадалки и прорицатели, желающие вызвать "на разговор" потусторонние силы, силы зла и ада.

В сере нуждались для своих опытов алхимики, нужна она была и медикам.

Лечебные свойства серы

Черные волосы она делала белыми, чернила серебро, "размягчала естество человека и вызывала румянец на его лице", согревала тело, помогала при зубной боли и фурункулезе, астме и язвах на голове.

Еще Аристотель говорил, что сера помогает при падучей (заставляет больного чихать), инсульте и мигрени, если закапать ее в нос.

Окуриванием серой лечили - простуду, болезни легких и застарелый кашель, головную боль и геморрой.

Признаки недостаточности серы: запоры, аллергии, тусклость и выпадение волос, ломкость ногтей, повышенное артериальное давление, боли в суставах, тахикардия, высокий уровень сахара и высокий уровень триглицеридов в крови. Жировая дистрофия печени, кровоизлияния - в почки, нарушения белкового и углеводного обмена, перевозбуждение нервной системы, раздражительность. Сера – минерал, делающий чеснок "королем растений".

Атомы серы являются составной частью молекул незаменимых аминокислот (цистин, цистеин, метионин), гормонов (инсулин, кальцитонин), витаминов (биотин, тиамин), глутатиона, таурина и других важных для организма соединений. В их составе сера участвует в окислительно–восстановительных реакциях, процессах тканевого дыхания, выработки энергии, передачи генетической информации, и выполняет много других важных функций. Сера является компонентом структурного белка коллагена. Хондроитин сульфат присутствует в коже, хрящах, ногтях, связках и клапанах миокарда. Серосодержащими метаболитами являются гемоглобин, гепарин, цитохромы, фибриноген и сульфолипиды.

Сера является распространенном самородном минералом, который еще в древние времена использовался в медицинских и производственных целях.

Она образовывается в соляных шахтах, в качестве отложений вокруг вулканов и внутри осадочных слоев. Серная кислота, основное производное серы, — это наиболее важное неорганичное химическое вещество, которое используется в торговле, химии и производстве удобрений. Раньше считалось, что потребление кислоты является одним из лучших показателей промышленного развития страны.

Цвет минерала схож с цветом поверхности спутника Юпитера Ио, что объясняется вулканическими процессами, в следствии которых образовывается сера.

Английское название сульфур (sulfur) происходит от латинского слова, которое в переводе значит “сера”.

По классификации Dana Class принадлежит к классу самородных элементов с полуметаллическими и неметаллическими элементами, группа полиморфов.

Классификация

Подвидом серы является росицкит - необычный полиморф минерала. Он кристаллизуется в моноклинной системе, тогда как кристаллы серы - орторомбические.

Химический состав

Самородная сера состоит из одноименного химического элемента (S8). В периодической системе химических элементов имеет атомный номер 16. Молекулярный вес составляет 256,53 г.

Физические свойства

  • твердость по шкале твердости минералов Мооса: 2 (схож с гипсом);
  • удельный вес: 2;
  • плотность: 2,05-2,09 (средний показатель - 2,06);
  • прозрачность: от прозрачных до полупрозрачных самородков;
  • цвет: желтый, коричнево- или зелено-желтый, оранжевый, белый;
  • цвет черты: белый;
  • блеск от стеклянного до земляничного;
  • расщепление (излом): конхоидальный (раковистый), неровный;
  • габитус: призматический, порошкообразный, имеет форму почки (как, например, гематит);
  • люминесцентность: не флуоресцентный.

Оптические показатели

Следует отметить, что низкий коэффициент электропроводности влияет на хрупкость минерала при нагревании.

Добыча (месторождение)

Первичная добыча самородной серы в основном происходит из отложений горных пород соляных куполов, содержащих минерал. Она также образуется из пирита (сульфид железа, FeS2), из песчаных месторождений в Канаде и извлекается в качестве побочного продукта на плавильных заводах, промышленных предприятиях, при переработке нефти, бензина и природного газа.

Общая мировая добыча серы в 2013 году составила 69 млн. тонн, из них примерно 50% было получено, как побочный продукт, при разработке месторождений нефти и природного газа. Непосредственная доля добычи минерала - 30% объема продукции.

Сера широко распространена, как самородные месторождения вблизи вулканов и горячих источников. Она является компонентом сульфидных минералов, например, галенита, пирита, сфалерита и др., а также встречается в метеоритах. Значительные депозиты расположены вдоль побережья Мексиканского залива, а также в крупных месторождениям эвапоритовых групп отложений в Восточной Европе и Западной Азии, которые, скорее всего, являются результатом бактериального разрушения сульфатных минералов.

Шахта Ваниль в провинции Кадис, Андалусии, Испания, является историческим европейским депозитом минерала.

Два других - рудник Мучав, Тарнобжег, Польша и Воинское месторождение, Самарская область, Россия.

Депозиты минерала находятся вблизи горячих источников и вулканических районов во многих частях мира, особенно вдоль Тихоокеанского огненного кольца. Такие месторождения в настоящее время разрабатываются в Индонезии, Чили и Японии. эти отложения является поликристаллическими, а размеры самого крупного экземпляра составляли 22*16*11 см.

Исторически сложилось, что Сицилия была крупным поставщиком ископаемого во времена промышленной революции. На Земле, как и на спутнике Юпитера Ио, элемент образовывается во время вулканических выбросов, в том числе, выбросов из гидротермальных каналов.

В течение 2015 года по всему миру было произведено 70 млн. тонн серы. Топ-12 стран-производителей минерала включает Китай, США, Россию, Канаду, Германию, Японию, Саудовскую Аравию, Индию, Казахстан, Иран, ОАЭ и Мексику.

История (мифология)

Будучи легкодоступным, минерал был известен в древние времена и даже упоминался в Библии. В тексте Святого Писания сера упоминается в связи с “огненной проповедью”, в которой прихожанам напоминается о вечном проклятии для неверующих и нераскаивающихся.

Согласно папирусу Эберса (одна из старейших сохранившихся рукописей медицинского содержания), в Древнем Египте серная мазь использовалась для лечения зернистых век. В “Одиссее” Гомера упоминается, что полезное ископаемое применяли для обеззараживания. В 35 книге “Естественной истории” Плиний Старший рассматривает минерал, упоминая, что лучшие источники находятся на острове Мелос. Он указал, что его используют для обеззараживания, в медицине и для отбеливания одежды.

Самородная сера в своей природной форме известна в Китае с VI века до н.э. Там ее впервые обнаружили в Ханьчжун. К III веку китайцы обнаружили, что минерал можно добывать из пирита.

Ранние алхимики дали минералу свой собственный алхимический символ - крест с треугольником на вершине.

В традиционном досовременном лечении кожи полезное ископаемое использовалось в кремах для облегчения таких состояний, как чесотка, стригущий лишай, псориаз, экзема и акне.

Сфера и область применения

Основное коммерческое использование минерала заключается в производстве серной кислоты H2SO4. Она же, в свою очередь, используется для производства удобрений и является основой многих производственных процессов. Другие виды применения:

  • фунгициды;
  • инсектициды;
  • компонент артиллерийского пороха.

Чистая сера не имеет запаха, а характерный запах гнилых яиц, которой связывают с минералом, образуется, когда порошок смешивают с водой, в результате чего производится сероводородный газ (H2S).

Лечебные свойства

Сера играет решающую роль в детоксикации, так как входит в состав одного из важнейших антиоксидантов, который производи тело - глутатион.

Сера является частью некоторых аминокислот в организме человека, участвует в синтезе белка, а также в нескольких ферментных реакциях. Он участвует в производстве коллагена, вещества, которое образует соединительные ткани, клетки и стенки артерий. Кроме того, он входит в состав кератина, который придает силу волосам, коже и ногтям.

Артрит

По данным Университета штата Мэриленд, США, пищевая добавка серы позитивно влияет на лечение остеоартрита, ревматоидного и псориатического артрита. Серные или грязевые ванны облегчают опухлость, вызванную артритом. Нанесения крема, в состав которого входит диметилсульфоксид, может уменьшить боль при некоторых типах артрита. Прием внутрь пищевой добавки с 6 мг метилсулфлнилметаном серы облегчает артритные боли, а в сочетании с глюкозамином ее эффект только возрастает.

Кожные заболевания

Доказан положительный эффект применения серы при болезнях кожи, в том числе акне, псориаз, бородавки, перхоть, экзема и фолликулит. Кремы, лосьоны и мыло, содержащие серу, используются для устранения отеков и покраснений, вызванных акне. Дерматит и чесотку лечат специализированной сульфидной мазью.

Диетические добавки

Специфических требований по дополнительному приему серы в пище нет, так как необходимый объем усваивается вместе с обычной едой. Она входит в состав богатых на животные белки продукты, такие как молочные продукты, яйца, говядина, птица и морепродукты. В частности, желтки яиц являются одним из высококачественных источников серы. Также ее употребление можно увеличить добавляя в еду лук, чеснок, репу, капусту, морские водоросли и малину. Орехи - дополнительный источник сульфура растительного происхождения.

Ученые признают, что недостаток элемента в организме может быть одной из причин болезни Альцгеймера, количество заболевших которой возрастает с каждым годом.

Следует отметить, что без достаточного количества серы нарушается метаболизм. Это в свою очередь приводит к повреждению мышечных и жировых клеток и, как результат, становится причиной не толерантности к глюкозе. Опасное состояние организма, известное, как метаболический синдром, происходит из-за то, что организм компенсирует дефектный метаболизм глюкозы и набирает вес.

Некоторые исследователи связывают нехватку серы в организме с распространением сердечных заболеваний.

Влияние на здоровье употребления продуктов с серой

Страны, населения которых употребляет большее количество серы в пищу, находятся в рейтинге здоровых стран

Греция, Италия и Япония являются первичными поставщиками серы для всего мира. Разве не случайно, что именно в этих странах процент сердечных заболеваний и ожирения населения - один из самых низких? Скорее всего, нет. Жители Исландии менее всего подвержены депрессии, ожирению, диабету и сердечно-сосудистым заболеваниям.

Некоторые исследователи связывают эти показатели с вулканическим поясом страны. Периодические извержения покрывают грунт сульфатосодержащими камнями. Эта обогащенная почва позволяет выращивать растения и животных. В свою очередь жители страны, которые употребляют мытные продукты в пищу, значительно улучшают свое здоровье.

Раньше считалось, что диета исландцев защищает их от хронических заболеваний благодаря рыбе. Однако теория не получила подтверждения, так как исландцы, которые переехали в Канаду и продолжили употреблять большое количество рыбы, были более подвержены заболеваниям, по сравнению с не эмигрировавшим населением. Таким образом, исландская почва, обогащенная серой, отыгрывает решающую роль в обеспечении иммунитета и получении организмом достаточного количества минерала.

Бытовое использование

Сера в основном используется в качестве прекурсора для других химических веществ. Примерно 85% продукта превращается в серную кислоту. Поскольку она имеет важное значение для мировой экономики, ее производство и потребление являются показателем промышленного развития страны.

Основным применением кислоты является добыча фосфатных руд для производства удобрений. Ее также используют для переработки нефти, обработки сточных вод и добычи полезных ископаемых. Сера реагирует непосредственно с метаном, образовывая сероуглерод, который используется для производства целлофана и вискозы.

Одним из важных применений минерала является вулканизация резины, где полисульфиды образуют связанные органические полимеры. Они нашли широкое применение в отбеливании бумаги и в качестве консервантов в сушеных фруктах. Многие поверхностно-активные вещества и производные, например, лаурилсульфат натрия, является производным сульфатов.

Несмотря на то, что минерал нерастворим в воде, он является одним из самых универсальных элементов для образования соединений. Сера реагирует и образует соединения со всеми химическими элементами, кроме золота, йода, иридия, азота, платины, теллура и инертных газов.

Приведенная ниже информация убедит каждого о том, что минерал распространен и присутствует буквально повсюду:

  • занимает 11 место по количеству в человеческом организме;
  • находится на 6 месте состава морской воды;
  • 14 — по распространенности в земной коре и 9 — на планете;
  • замыкает десятку самых распространенных элементов солнечной системы и Вселенной.

Уход за камнем

При намокании образцы полезного ископаемого образуют сероводород, который вызывает их разрушение. Чтобы предотвратить это, не рекомендуется хранить минерал во влажных условиях. Теплая вода может вызвать разрушение самородков.

При воздействии тепла образцы могут растрескиваться. При работе с минералом следует избегать излишнего контакта с ним, а также хранить в темном помещении.

Чистая желтая сера

Минерал из класса самородных элементов. Сера представляет собой пример хорошо выраженного энантиоморфного полиморфизма. В природе образует 2 полиморфные модификации: a-сера ромбическая и b-сера моноклинная. При атмосферном давлении и температуре 95,6°С a-сера переходит в b-серу. Сера жизненно необходима для роста растений и животных, она входит в состав живых организмов и продуктов их разложения, ее много, например, в яйцах, капусте, хрене, чесноке, горчице, луке, волосах, шерсти и т.д. Она присутствует также в углях и нефти.

Смотрите так же:

СТРУКТУРА

Самородная сера обычно представлена a-серой, которая кристаллизуется в ромбической сингонии, ромбо-дипирамидальный вид симметрии. Кристаллическая сера имеет две модификации; одну из них, ромбическую, получают из раствора серы в сероуглероде (CS 2) испарением растворителя при комнатной температуре. При этом образуются ромбовидные просвечивающие кристаллы светложелтого цвета, легко растворимые в CS 2 . Эта модификация устойчива до 96° С, при более высокой температуре стабильна моноклинная форма. При естественном охлаждении расплавленной серы в цилиндрических тиглях вырастают крупные кристаллы ромбической модификации с искаженной формой (октаэдры, у которых частично «срезаны» углы или грани). Такой материал в промышленности называется комовая сера. Моноклинная модификация серы представляет собой длинные прозрачные темножелтые игольчатые кристаллы, также растворимые в CS 2 . При охлаждении моноклинной серы ниже 96° С образуется более стабильная желтая ромбическая сера.

СВОЙСТВА

Самородная сера жёлтого цвета, при наличии примесей — жёлто-коричневая, оранжевая, бурая до чёрной; содержит включения битумов, карбонатов, сульфатов, глины. Кристаллы чистой серы прозрачны или полупрозрачны, сплошные массы просвечивают в краях. Блеск смолистый до жирного. Твердость 1-2, спайности нет, излом раковистый. Плотность 2,05 -2,08 г/см 3 , хрупкая. Легко растворима в канадском бальзаме, в скипидаре и керосине. В HCl и H 2 SO 4 нерастворима. HNO 3 и царская водка окисляют серу, превращая её в H 2 SO 4 . Сера существенно отличается от кислорода способностью образовывать устойчивые цепочки и циклы из атомов.
Наиболее стабильны циклические молекулы S 8 , имеющие форму короны, образующие ромбическую и моноклинную серу. Это кристаллическая сера - хрупкое вещество жёлтого цвета. Кроме того, возможны молекулы с замкнутыми (S 4 , S 6) цепями и открытыми цепями. Такой состав имеет пластическая сера, вещество коричневого цвета, которая получается при резком охлаждении расплава серы (пластическая сера уже через несколько часов становится хрупкой, приобретает жёлтый цвет и постепенно превращается в ромбическую). Формулу серы чаще всего записывают просто S, так как она, хотя и имеет молекулярную структуру, является смесью простых веществ с разными молекулами.
Плавление серы сопровождается заметным увеличением объёма (примерно 15 %). Расплавленная сера представляет собой жёлтую легкоподвижную жидкость, которая выше 160 °C превращается в очень вязкую тёмно-коричневую массу. Наибольшую вязкость расплав серы приобретает при температуре 190 °C; дальнейшее повышение температуры сопровождается уменьшением вязкости и выше 300 °C расплавленная сера снова становится подвижной. Это связано с тем, что при нагревании серы она постепенно полимеризуется, увеличивая длину цепочки с повышением температуры. При нагревании серы свыше 190 °C полимерные звенья начинают рушиться.
Сера может служить простейшим примером электрета. При трении сера приобретает сильный отрицательный заряд.

МОРФОЛОГИЯ

Образует усечённо-дипирамидальные, реже дипирамидальные, пинакоидальные или толстопризматические кристаллы, а также плотные скрытокристаллические, сливные, зернистые, реже тонковолокнистые агрегаты. Главные формы на кристаллах: дипирамиды (111) и (113), призмы (011) и (101), пинакоид (001). Также сростки и друзы кристаллов, скелетные кристаллы, псевдосталактиты, порошковатые и землистые массы, налёты и примазки. Для кристаллов характерны множественные параллельные срастания.

ПРОИСХОЖДЕНИЕ

Сера образуется при вулканических извержениях, при выветривании сульфидов, при разложении гипсоносных осадочных толщ, а также в связи с деятельностью бактерий. Главные типы месторождений самородной серы — вулканогенные и экзогенные (хемогенно-осадочные). Экзогенные месторождения преобладают; они связаны с гипсо-ангидритами, которые под воздействием выделений углеводородов и сероводорода восстанавливаются и замещаются серно-кальцитовыми рудами. Такой инфильтрационно-метасоматический генезис имеют все крупнейшие месторождения. Самородная сера часто образуется (кроме крупных cкоплений) в результате окисления H 2 S. Геохимические процессы её образования существенно активизируются микроорганизмами (сульфатредуцирующими и тионовыми бактериями). Сопутствующие минералы — кальцит, арагонит, гипс, ангидрит, целестин, иногда битумы. Среди вулканогенных месторождений самородной серы главное значение имеют гидротермально-метасоматические (например, в Японии), образованные сероносными кварцитами и опалитами, и вулканогенно-осадочные сероносные илы кратерных озёр. Образуется также при фумарольной деятельности. Образуясь в условиях земной поверхности, самородная сера является всё же не очень устойчивой и, постепенно окисляясь, даёт начало сульфатам, гл. образом гипсу.
Используется в производстве серной кислоты (около 50% добываемого количества). В 1890 г. Герман Фраш предложил плавить серу под землёй и извлекать на поверхность через скважины, и в настоящее время месторождения серы разрабатывают главным образом путём выплавки самородной серы из пластов под землёй непосредственно в местах её залегания. Сера также в больших количествах содержится в природном газе (в виде сероводорода и сернистого ангидрида), при добыче газа она откладывается на стенках труб, выводя их из строя, поэтому её улавливают из газа как можно быстрее после добычи.

ПРИМЕНЕНИЕ

Примерно половина производимой серы используется в производстве серной кислоты. Серу применяют для вулканизации каучука, как фунгицид в сельском хозяйстве и как сера коллоидная - лекарственный препарат. Также сера в составе серобитумных композиций применяется для получения сероасфальта, а в качестве заместителя портландцемента - для получения серобетона. Сера находит применение для производства пиротехнических составов, ранее использовалась в производстве пороха, применяется для производства спичек.

Сера (англ. Sulphur) — S

КЛАССИФИКАЦИЯ

Strunz (8-ое издание) 1/B.03-10
Nickel-Strunz (10-ое издание) 1.CC.05
Dana (7-ое издание) 1.3.4.1
Dana (8-ое издание) 1.3.5.1
Hey’s CIM Ref. 1.51

Представляет собой пример хорошо выра­женного энантиотропного полиморфизма. Она известна в трех кристалличе­ских модификациях, входящих в группу серы: α-сера, β-сера (сульфурит), γ-сера (розицкит). Наиболее устойчи­вой модификацией в нормальных условиях является ромбическая (α-сера), к которой относятся естественные кристаллы серы. Вторая, моноклинная модификация (β-сера) наиболее устойчива при высоких температурах. Моноклинная при охлаждении до температуры 95,5° С переходит в ромбиче­скую. В свою очередь, ромбическая при нагревании до этой температуры переходит в моноклинную и при температуре 119° С плавится. Различают кристаллическую и аморфную серу. Кристаллическая сера растворяется в органических соединениях (скипидаре, сероуглероде и керосине), тогда как аморфная сера в сероуглероде не растворяется. Примеси аморфной серы снижают температуру плавления кристаллической серы и затрудняют ее очистку.


Химический состав . Сера часто встречается химически чистой, иногда содержит до 5,2% селена (селенистая сера), а также и . Очень часто сера загрязнена механическими примесями глинистых, а также битуминозных веществ.

Структурная ячейка содержит 128S. Пространственная группа D 242h - Fddd; а 0 = 10,48, b 0 =12,92 с 0 = 24,55; а 0: b 0: с 0 = 0,813: 1,1: 1,903. В основе структуры ромбической серы лежит сложная молекулярная решетка. Элементарная ячейка состоит из 16 электрически нейтральных молекул, объединенных в цепочку замкнутых, зигзагообразных «сморщенных» колец из 8 атомов серы

s - s - 2.12А, s 8 - s 8 = 3,30 А

Агрегаты и габитус . Сера встречается в виде с плова и землистых скоплений, а также друз кристаллов, иногда в виде натечных форм и налетов. Часто встречаются хорошо образованные кристаллы бипирамидального (удлиненно-бипирамидального и срезанно-бипирамидального) и тетраэдрообразного габитуса, размер которых достигает нескольких сантиметров. Главными формами на кристаллах ромбической серы являются бипирамиды {111}, {113}, призмы {011}, {101} и пинакоид {001}.

Менее распространенными, но характерными для некоторых месторождений, являются пинакоидальные кристаллы (таблитчатого и пластинчатого облика). Изредка встречаются двойники срастания серы по (111), иногда по (011) и (100). Довольно часто кристаллы серы образуют параллельные сростки.

Физические свойства . Для серы характерны разные оттенки желтого цвета, реже бурого до черного. Цвет черты желтоватый. Блеск на гранях алмазный, на изломе - жирный. В кристаллах просвечивает. Спайность несовершенная по(001),(110), и (111). Твердость-1-2. Хрупкая. Плотность - 2,05-2,08. Сера - хороший теплоизолятор. Обладает полупроводниковыми свойствами. При трении заряжается отрицательным электричеством.

Оптически положительная; 2V = 69° ; ng - 2,240 - 2,245, nm - 2,038. nр = 1,951 - 1,958, ng - nр = 0,287.

Диагностические признаки . Кристаллические формы, цвет, низкая твердость и плотность, жирный блеск на изломе кристаллов, низкая температура плавления - характерные признаки серы. Главные линии на рентгенограммах: 3,85 ; 3,21 и 3,10. В НСl и H 2 S0 4 нерастворима. NH0 3 и царская водка окисляют серу, превращая ее в H 2 S0 4 . Сера легко растворяется в сероуглероде, скипидаре и керосине. П. п. т. легко плавится и загорается голубым пламенем с выделением S0 2 .

Образование и месторождения . Сера широко распространена в природе, ее месторождения возникают: 1) при вулканических извержениях; 2) при поверхностном разложении сульфосолей и сернистых соединений металлов, 3) при раскислении сернокислых соединений (главным образом гипса), 4) при разрушении органических соединений (преимущественно богатых серой асфальтов и нефти), 5) при разрушении органического организмов и 6) при разложении сероводорода (а также S0 2) на земной поверхности. Независимо от этих процессов сера образуется за счет сероводорода и иногда S0 2 и S0 3 , являющихся промежуточными продуктами при разложении других сернистых образований.

Промышленные месторождения серы представлены тремя типами: 1) вулканические месторождения, 2) месторождения, связанные с окислением сульфидов, и 3) осадочные месторождения. Вулканические месторож­дения серы возникают путем кристаллизации возгонов. Сера в виде хорошо образованных кристаллов выстилает выходные отверстия фумарол и мелкие трещины и пустоты. Вулканические месторождения серы известны в Италии, Японии, Чили и других вулканических районах. В Советском Союзе они имеются на Камчатке и Кавказе. Месторождения серы, связанные с окислением сульфидов, характерны для зоны окисления сульфидных месторождений. Их образование обусловлено неполным окислением сульфидов и происходите первую стадию окисления по такой возможной реакции:

RS + Fe 2 (S0 4 ) 3 = 2FeS0 4 + RS0 4 + S.

Наибольшее значение по запасам имеют месторождения серы, которые возникли при формировании осадочных горных пород. В этих месторождениях исходным веществом для образования серы является . Окисление сероводорода происходит следующим образом:

2HS + 0 2 = 2Н 2 0+2S.

Что касается происхождения самого сероводорода и путей его перехода в серу, большинство ученых рассматривает эти процессы с биохимической точки зрения, связывая их с жизнедеятельностью организмов. В конце XIX столетия был открыт ряд микробов, которым свойственна способность перерабатывать (восстанавливать) сернокислые соли в . Вместе с тем установлено, что образуется при гниении белковых соединений и в результате жизнедеятельности некоторых видов лучистого грибка

Actynomicetes. Среди микробов особенно выделяется род Microspira, который населяет дно стоячих водоемов и морских бассейнов, зараженных сероводо­родом. Эти организмы найдены также в подземных водах и нефти на глубинах до 1000-1500 м. Специфическая связь серы в главнейших месторожде­ниях с гипсом, нефтью и другими битумами (например, асфальтом и озоке­ритом) дает основание считать, что органических соединений является источником энергии и окисляется бактериями за счет кислорода, который они получают из сульфатов (например, гипса). В этом случае весь процесс образования сероводорода имеет такой вид:

Са²⁺+SO²⁻ 4 + 2С +2Н 2 0 = H 2 S+Са(НС0 3 ) 2

Переход сероводорода в серу может происходить или по реакции 2H 2 S+ О 2 = 2Н 2 0 + 2S, или же биохимическим путем под влиянием других бактерий, главнейшими среди которых являются Biggiatoa mirabith Thiospirillит. Эти бактерии, поглощая сероводород, перерабатывают его в серу, которую откладывают внутри своих клеток в виде желтых блестя­щих шариков. Бактерии живут в озерах, прудах и мелких частях моря и, падая на дно вместе с другими отложениями, дают начало месторождениям серы.

Месторождения , в которых сера возникает одновременно с породами, которые ее содержат, носят название сингенетических. Они известны в Сици­лии, в Советском Союзе (в Туркмении, Поволжье, Дагестане, Приднестровье и других местах). Особенностью сингенетических месторождений серы является ее тесная связь с определенным стратиграфическим горизонтом. Когда сера образуется за счет сероводорода, который циркулирует по трещинам горных пород, возникают эпигенетические месторождения. К ним относятся месторождения Техаса и Луизианы в США; в России - Шор-Су в Фергане, а также месторождения в районе Махачкалы, Казбека и Грозного. Для многих из этих месторождений характерны явления пере­кристаллизации, в результате которой возникают крупнокристаллические скопления серы. Например, в Роздольском месторождении первичная сера представлена скрытокристаллической разностью, а вторичная (перекристаллизованная) - крупнокристаллической разностью с отдельными кристаллами до 5 см.

В России месторождения серы развиты в Приднестровье, где сера встречается в гипсово-известняковой толще верхнего тортона в виде скрытокристаллических скоплений в пелитоморфном известняке (Роздоль-ское и Язовское месторождения), а также в виде крупных кристаллов в пустотах в тесной ассоциации с целестином и крупнокристаллическим кальцитом (Роздольское месторождение). В Средней Азии (Гаурдак и Шор-Су) сера наблюдается в трещинах и пустотах разных осадочных пород в ассоциации с битумами, гипсом, целестином, кальцитом и арагонитом. В Каракумах - в виде холмов, покрытых кремнистыми породами в ассоциации с гипсом, квасцами, кварцем, халцедоном и т. д. Осадочные месторождения серы известны в Поволжье. Крупные месторождения серы за гра­ницей известны в Сицилии, а также в США в штатах Техас и Луизиана, где они связаны с соляными куполами.

Сера - S. Наиболее устойчивую при комнатной температуре α-модификацию серы называют обычно ромбической серой или просто серой.

Химический состав . В ряде случаев устанавливается химически чистая сера, но обычно загрязнена посторонними механическими примесями: глинистым или органическим веществом, капельками нефти, газами и пр. Известны редкие разновидности с изоморфной примесью Se обычно до 1%, изредка до 5,2% - селенистая сера, а также Те, иногда As и в исключительных случаях Тl.

Сингония ромбическая. Кристаллическая структура . Согласно рентгенометрическим исследованиям, ромбическая сера обладает редкой для неорганических соединений молекулярной, и притом очень сложной, решеткой. В кристаллической структуре каждый атом серы с двух сторон имеет сферы, пересекающиеся со сферами соседних атомов, причем цепочки, состоящие из 8 атомов, замкнуты.

Отсюда - молекула серы S 8 . Элементарная ячейка сложена 16 такими электрически нейтральными молекулами (кольцами), очень слабо связанными друг с другом вандерваальсовской связью. Облик кристаллов . Кристаллы чаще имеют пирамидальный или усеченнопирамидальный вид. Агрегаты . Часто встречается в сплошных, иногда землистых массах. Изредка наблюдаются натечные почковидные формы и налеты (в районах вулканических извержений).

Цвет . У α-серы наблюдаются различные оттенки желтого цвета: соломенно-желтый, медово-желтый, желтовато-серый, бурый и черный (от углеродистых примесей). Черты почти не дает, порошок слабожелтоватый. Блеск на гранях алмазный, в изломе жирный. В кристаллах просвечивает. Твердость 1-2. Хрупка. Спайность несовершенная. Удельный вес 2,05-2,08. Прочие свойства . Электропроводность и теплопроводность очень слабые (хороший изолятор). При трении заряжается отрицательным электричеством. Растрескивается от теплоты руки.

Диагностические признаки . Характерный цвет, низкая твердость, хрупкость, жирный блеск в изломе кристаллов и легкоплавкость. П. п. тр. и от спички легко плавится (при 112,8°С) и загорается голубым пламенем с выделением характерного запаха SO 2 .

Самородная сера - единственный среди рассматриваемых в классе самородных элементов минерал, обладающий молекулярным строением вещества. S характеризуется совершенно особыми свойствами. Наличие в решетке в качестве структурных единиц электрически нейтральных молекул S 8 объясняет такие свойства, как плохая электропроводность, низкая теплопроводность, слабая связь между молекулами.

Происхождение . Самородная сера встречается исключительно в самой верхней части земной коры и на ее поверхности. Образуется различными путями:

При вулканических извержениях, осаждаясь в виде возгонов на стенках кратеров, в трещинах пород, иногда изливаясь в жидком виде с горячими водами в виде потоков (Япония). Возникает в результате неполного окисления сероводорода H 2 S в сольфатарах или как продукт реакции H 2 S с сернистым газом: 2H 2 S + 20 = 2Н 2 O + 2S; H 2 S + SO 2 = Н 2 O + О + 2S;

Сольфатары (итал., единственное число solfatara, от solfo - сера), струи сернистого газа и сероводорода с примесью паров воды, углекислого и других газов, выделяющиеся из каналов и трещин на стенках и дне кратера, на склонах вулканов.

При разложении сернистых соединений металлов, главным образом пирита, в нижних частях зоны окисления рудных месторождений. Обычно сильно загрязнена различными механическими примесями;

При разложении гипсоносных осадочных толщ. Часто наблюдается парагенезис самородной серы с гипсом, на разъеденных участках которого она образуется в виде кристаллических и порошковатых масс;

Осадочным (биохимическим) путем в осадочных породах, представленных пластами, содержащими гипс, твердые и жидкие битумы (асфальт, нефть) и др. Этот тип месторождений широко распространен на земном шаре и имеет большое промышленное значение. Происхождение серы биохимическим путем связывают с жизнедеятельностью анаэробных бактерий, в результате чего образуется сероводород, неполное окисление которого приводит к выпадению серы.

Применение . Основное количество серы расходуется на производство серной кислоты, используемой во многих отраслях промышленности; затем в сельском хозяйстве (для борьбы с вредителями); в резиновом производстве (процесс вулканизации резины); при изготовлении спичек, фейерверков, красок и пр.

Алмаз

Алмаз - С. Название происходит от греческого слова "адамас" - непреодолимый (очевидно, имеется в виду наивысшая твердость и устойчивость по отношению к физическим и химическим агентам). Имя собственное образца – «Горняк»

Разновидности :

-борт - неправильной формы сростки и шаровидные лучистые агрегаты;

-карбонадо - тонкозернистые пористые агрегаты, окрашенные аморфным графитом и посторонними примесями в буровато-черный цвет.

Химический состав . Бесцветные разновидности состоят из чистого углерода. Окрашенные и непрозрачные разновидности в несгораемом остатке, достигающем иногда нескольких процентов, обнаруживают SiO 2 , MgO, CaO, FeO,Fe 2 O 3 , A1 2 O 3 , ТiO 2 и др. В виде включений в алмазах нередко наблюдается графит и некоторые другие минералы.

Кристаллическая решетка алмаза. А - изображение центров атомов; В - та же решетка в виде тетраэдров, вершины и центры которых являются центрами атомов углерода

Сингония кубическая. Облик кристаллов октаэдрический, менее обычен додекаэдрический, редко кубический и изредка тетраэдрический. Грани кристаллов часто бывают представлены выпуклыми и неровными, иногда разъеденными поверхностями. Наблюдаются двойники срастания. Размеры отдельных кристаллов варьируют от мельчайших до очень крупных, весящих несколько сот и даже тысяч каратов (метрический карат = 0,2 г). Крупнейшие кристаллы весили (в каратах): "Коллинан" - 3025, "Эксцельзиор" - 969,5, "Виктория" - 457, "Орлов" - 199,6.

Цвет . Бесцветный водяно-прозрачный или окрашенный в голубой, синий, желтый, бурый и черный цвета. Блеск сильный алмазный. Твердость 10. Абсолютная твердость в 1000 раз превышает твердость кварца и в 150 раз - корунда. Хрупок . Спайность средняя. Плотность 3,47-3,56. Электропроводность слабая.

Диагностические признаки . Алмаз является единственным минералом по своей исключительной твердости. Характерны также сильный алмазный блеск и часто кривоплоскостные грани кристаллов. Мелкие зерна в шлихах легко узнаются по люминесценции, резко проявляющейся в ультрафиолетовых лучах. Цвета люминесценции обычно голубовато-синие, иногда зеленые.

Происхождение . Коренные месторождения генетически связаны с ультраосновными глубинными магматическими породами: перидотитами, кимберлитами и др. В этих породах кристаллизация алмаза происходит, очевидно, на больших глубинах в условиях высоких температур и давления. Судя по формам и условиям нахождения, алмаз кристаллизовался в магмах одним из первых. Не ясно, кристаллизовался ли алмаз за счет углерода самой магмы или за счет углерода, усваивавшегося из окружающих пород. В ассоциациях с алмазом наблюдаются: графит, оливин - (Mg, Fe) 2 SiO 4 , хромшпинелиды - (Fe,Mg)(Cr,Al,Fe) 2 O 4 , магнетит - FeFe 2 O 4 , гематит - Fe 2 O 3 и др.

Россыпные месторождения алмаза, устойчивого в экзогенных условиях, образуются за счет разрушения и размыва алмазоносных пород.

Кимберлит (от названия г. Кимберли в Южной Африке), магматическая ультраосновная брекчиевидная горная порода эффузивного облика, выполняющая кимберлитовые трубки взрыва.

Кимберлитовая трубка - вертикальное или близкое к вертикальному геологическое тело, образовавшееся при прорыве газов сквозь земную кору. Кимберлитовая трубка заполнена кимберлитом.

Применение . Совершенно прозрачные алмазы применяются в ювелирном деле как драгоценные камни (бриллианты). Для технических целей употребляются мелкие алмазы, а также борт и карбонадо. Эти разновидности используются в металлообрабатывающей, камнеобрабатывающей, абразивной и других отраслях промышленности.

Графит


Графит - С. Название происходит от греческого слова "графо" - пишу. Разновидности :

Графитит - скрытокристаллическая разность;

Шунгит - аморфная разность, образовавшаяся в результате природного коксования углей.

Химический состав графита редко отличается чистотой. В значительных количествах (до 10-20%) часто присутствует зола, состоящая из различных компонентов (SiO 2 , Аl 2 O 3 , FeO, MgO, СаО, Р 2 О 5 , CuO и др.), иногда вода, битумы и газы (до 2%).

Сингония гексагональная. Кристаллическая структура в сравнении с алмазом приведена на рисунке. Различия физических свойств алмаза и графита обусловлены различием в строении кристаллических решеток этих минералов. Ионы углерода в графите лежат листами, представленными плоскими гексагональными сетками.

Расположение центров атомов в алмазе (А) и в графите (Б)

Облик кристаллов . Хорошо образованные кристаллы встречаются крайне редко. Они имеют вид шестиугольных пластинок или табличек, иногда с треугольными штрихами на грани. Агрегаты часто тонкочешуйчатые. Реже распространены шестоватые или волокнистые массы. Цвет графита железно-черный до стально-серого. Черта черная блестящая. Блеск сильный металловидный; скрытокристаллические агрегаты матовые. В тончайших листочках просвечивает серым цветом. Твердость 1. В тонких листочках гибок. Жирен на ощупь. Мажет бумагу и пальцы. Спайность совершенная. Удельный вес 2,09-2,23 (изменяется в зависимости от степени дисперсности и наличия тончайших пор), у шунгита 1,84-1,98. Прочие свойства . Обладает высокой электропроводностью, что обусловлено очень плотной упаковкой атомов в листах.

Диагностические признаки . Легко узнается по цвету, низкой твердости и жирности на ощупь. От сходного с ним молибденита (MoS 2) отличается более темным железно-черным цветом и более слабым блеском.

П. п. тр. не плавится. При накаливании в струе кислорода сгорает труднее, нежели алмаз. Улетучивается, не плавясь, лишь в пламени вольтовой дуги. В кислотах не растворяется. Порошок в смеси с KNO 3 при нагревании дает вспышку.

Происхождение . В природе графит образуется при восстановительных процессах в условиях высоких температур.

Широко распространены метаморфические месторождения графита, возникшие за счет каменных углей или битуминозных отложений в условиях регионального метаморфизма или под влиянием интрузий магмы.

Встречается иногда среди магматических горных пород разнообразного состава. Источником углерода во многих случаях являются вмещающие углеродсодержащие горные породы.

Известны случаи находок графита в пегматитах. Встречаются месторождения на контактах известняков с изверженными породами в провинциях Онтарио и Квебек в Канаде, а также жильные месторождения крупнолистоватого графита, например на о. Цейлон.

Применение . Графит применяется для самых различных видов производства: для изготовления графитовых тиглей, в литейном деле; производстве карандашей; электродов; для смазки трущихся частей; в красочной промышленности и др.

Группа « полуметаллов»

В эту группу, кроме мышьяка, входят сурьма и висмут, т. е. элементы больших периодов V группы таблицы Менделеева. Все они в природных условиях хотя и редко, но наблюдаются в самородном состоянии, кристаллизуясь в одной (тригональной) сингонии и образуя, однотипные кристаллические решетки. Несмотря на это, элементы группы полуметаллов не встречаются совместно и не дают в природе ни твердых растворов, ни определенных соединений. Исключение составляют мышьяк и сурьма, которые при высоких температурах образуют твердые растворы во всех пропорциях, а при низких температурах - лишь устойчивое интертметаллическое соединение AsSb (аллемонтит).

Интерметаллические соединения - химические соединения металлов друг с другом.