Производная функции. Геометрический смысл производной. Что такое производная?Определение и смысл производной функции Геометрический смысл производной уравнение

Произво́дная (функции в точке) - основное понятие дифференциального исчисления , характеризующее скорость изменения функции (в данной точке). Определяется как предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю , если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке).

Процесс вычисления производной называется дифференци́рованием . Обратный процесс - нахождение первообразной - интегрирование .

Если функция задана графиком, её производная в каждой точке равна тангенсу угла наклона касательной к графику функции. А если функция задана формулой - вам помогут таблица производных и правила дифференцирования, то есть правила нахождения производной.

4.Производная сложной и обратной функции.

Пусть теперь задана сложная функция , т.е. переменная есть функция переменной , а переменная есть, в свою очередь, функция от независимой переменной .

Теорема . Если и дифференцируемые функции своих аргументов, то сложная функция является дифференцируемой функцией и ее производная равна произведению производной данной функции по промежуточному аргументу и производной промежуточного аргумента по независимой переменной:

.

Утверждение легко получается из очевидного равенства (справедливого при и ) предельным переходом при (что в силу непрерывности дифференцируемой функции влечет ).

Перейдем к рассмотрению производной обратной функции .

Пусть на множестве дифференцируемая функция имеет множество значений и на множестве существует обратная функция .

Теорема . Если в точке производная , то производная обратной функции в точке существует и равна обратной величине производной данной функции : , или

Эта формула легко получается из геометрических соображений.

Так как есть тангенс угла наклона касательной линии к оси , то есть тангенс угла наклона той же касательной (той же линии ) в той же точке к оси .

Если и острые, то , а если тупые, то .

В обоих случаях . Этому равенству и равносильно равенство

5.Геометрический и физический смысл производной.

1) Физический смысл производной.

Если функция y = f(x) и ее аргумент x являются физическими величинами, то производная– скорость изменения переменной y относительно переменной x в точке. Например, если S = S(t) – расстояние, проходимое точкой за время t, то ее производная– скорость в момент времени. Если q = q(t) – количество электричества, протекающее через поперечное сечение проводника в момент времени t, то– скорость изменения количества электричества в момент времени, т.е. сила тока в момент времени.

2) Геометрический смысл производной.

Пусть – некоторая кривая,– точка на кривой.

Любая прямая, пересекающая не менее чем в двух точках называется секущей.

Касательной к кривой в точкеназывается предельное положение секущей, если точкастремится к, двигаясь по кривой.

Из определения очевидно, что если касательная к кривой в точке существует, то она единственная

Рассмотрим кривую y = f(x) (т.е. график функции y = f(x)). Пусть в точке он имеет невертикальную касательную. Ее уравнение:(уравнение прямой, проходящей через точкуи имеющую угловой коэффициент k).

По определению углового коэффициента , где– угол наклона прямойк оси.

Пусть– угол наклона секущейк оси, где. Так как– касательная, то при

Следовательно,

Таким образом, получили, что– угловой коэффициент касательной к графику функции y = f(x) в точке(геометрический смысл производной функции в точке). Поэтому уравнение касательной к кривой y = f(x) в точкеможно записать в виде

Тип задания: 7

Условие

Прямая y=3x+2 является касательной к графику функции y=-12x^2+bx-10. Найдите b , учитывая, что абсцисса точки касания меньше нуля.

Показать решение

Решение

Пусть x_0 — абсцисса точки на графике функции y=-12x^2+bx-10, через которую проходит касательная к этому графику.

Значение производной в точке x_0 равно угловому коэффициенту касательной, то есть y"(x_0)=-24x_0+b=3. С другой стороны, точка касания принадлежит одновременно и графику функции и касательной, то есть -12x_0^2+bx_0-10=3x_0+2. Получаем систему уравнений \begin{cases} -24x_0+b=3,\\-12x_0^2+bx_0-10=3x_0+2. \end{cases}

Решая эту систему, получим x_0^2=1, значит либо x_0=-1, либо x_0=1. Согласно условию абсцисса точки касания меньше нуля, поэтому x_0=-1, тогда b=3+24x_0=-21.

Ответ

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Прямая y=-3x+4 параллельна касательной к графику функции y=-x^2+5x-7. Найдите абсциссу точки касания.

Показать решение

Решение

Угловой коэффициент прямой к графику функции y=-x^2+5x-7 в произвольной точке x_0 равен y"(x_0). Но y"=-2x+5, значит, y"(x_0)=-2x_0+5. Угловой коэффициент прямой y=-3x+4, указанной в условии, равен -3. Параллельные прямые имеют одинаковые угловые коэффициенты. Поэтому находим такое значение x_0, что =-2x_0 +5=-3.

Получаем: x_0 = 4.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Показать решение

Решение

По рисунку определяем, что касательная проходит через точки A(-6; 2) и B(-1; 1). Обозначим через C(-6; 1) точку пересечения прямых x=-6 и y=1, а через \alpha угол ABC (на рисунке видно, что он острый). Тогда прямая AB образует с положительным направлением оси Ox угол \pi -\alpha, который является тупым.

Как известно, tg(\pi -\alpha) и будет значением производной функции f(x) в точке x_0. Заметим, что tg \alpha =\frac{AC}{CB}=\frac{2-1}{-1-(-6)}=\frac15. Отсюда по формулам приведения получаем: tg(\pi -\alpha) =-tg \alpha =-\frac15=-0,2.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Прямая y=-2x-4 является касательной к графику функции y=16x^2+bx+12. Найдите b , учитывая, что абсцисса точки касания больше нуля.

Показать решение

Решение

Пусть x_0 — абсцисса точки на графике функции y=16x^2+bx+12, через которую

проходит касательная к этому графику.

Значение производной в точке x_0 равно угловому коэффициенту касательной, то есть y"(x_0)=32x_0+b=-2. С другой стороны, точка касания принадлежит одновременно и графику функции и касательной, то есть 16x_0^2+bx_0+12=-2x_0-4. Получаем систему уравнений \begin{cases} 32x_0+b=-2,\\16x_0^2+bx_0+12=-2x_0-4. \end{cases}

Решая систему, получим x_0^2=1, значит либо x_0=-1, либо x_0=1. Согласно условию абсцисса точки касания больше нуля, поэтому x_0=1, тогда b=-2-32x_0=-34.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

На рисунке изображён график функции y=f(x), определённой на интервале (-2; 8). Определите количество точек, в которых касательная к графику функции параллельна прямой y=6.

Показать решение

Решение

Прямая y=6 параллельна оси Ox . Поэтому находим такие точки, в которых касательная к графику функции параллельна оси Ox. На данном графике такими точками являются точки экстремума (точки максимума или минимума). Как видим, точек экстремума 4 .

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Прямая y=4x-6 параллельна касательной к графику функции y=x^2-4x+9. Найдите абсциссу точки касания.

Показать решение

Решение

Угловой коэффициент касательной к графику функции y=x^2-4x+9 в произвольной точке x_0 равен y"(x_0). Но y"=2x-4, значит, y"(x_0)=2x_0-4. Угловой коэффициент касательной y=4x-7, указанной в условии, равен 4 . Параллельные прямые имеют одинаковые угловые коэффициенты. Поэтому находим такое значение x_0, что 2x_0-4=4. Получаем: x_0=4.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x_0. Найдите значение производной функции f(x) в точке x_0.

Показать решение

Решение

По рисунку определяем, что касательная проходит через точки A(1; 1) и B(5; 4). Обозначим через C(5; 1) точку пересечения прямых x=5 и y=1, а через \alpha угол BAC (на рисунке видно, что он острый). Тогда прямая AB образует с положительным направлением оси Ox угол \alpha.

Конспект открытого урока преподавателя ГБПОУ «Педагогического колледжа № 4 Санкт-Петербурга»

Мартусевич Татьяны Олеговны

Дата: 29.12.2014.

Тема: Геометрический смысл производной.

Тип урока: изучение нового материала.

Методы обучения: наглядный, частично поисковый.

Цель урока.

Ввести понятие касательной к графику функции в точке, выяснить в чем состоит геометрический смысл производной, вывести уравнение касательной и научить находить его.

Образовательные задачи:

    Добиться понимания геометрического смысла производной; вывода уравнения касательной; научиться решать базовые задачи;

    обеспечить повторение материала по теме «Определение производной»;

    создать условия контроля (самоконтроля) знаний и умений.

Развивающие задачи:

    способствовать формированию умений применять приемы сравнения, обобщения, выделения главного;

    продолжить развитие математического кругозора, мышления и речи, внимания и памяти.

Воспитательные задачи:

    содействовать воспитанию интереса к математике;

    воспитание активности, мобильности, умения общаться.

Тип урока – комбинированный урок с использованием ИКТ.

Оборудование – мультимедийная установка, презентация Microsoft Power Point .

Этап урока

Время

Деятельность преподавателя

Деятельность учащегося

1. Организационный момент.

Сообщение темы и цели урока.

Тема: Геометрический смысл производной.

Цель урока.

Ввести понятие касательной к графику функции в точке, выяснить в чем состоит геометрический смысл производной, вывести уравнение касательной и научить находить его.

Подготовка студентов к работе на занятии.

Подготовка к работе на занятии.

Осознание темы и цели урока.

Конспектирование.

2. Подготовка к изучению нового материала через повторение и актуализацию опорных знаний.

Организация повторения и актуализации опорных знаний: определения производной и формулирование её физического смысла.

Формулирование определения производной и формулирование её физического смысла. Повторение, актуализация и закрепление опорных знаний.

Организация повторения и формирование навыка нахождения производной степенной функции и элемениарных функций.

Нахождение производной данных функций по формулам.


Повторение свойств линейной функции.

Повторение, восприятие чертежей и высказываний преподавателя

3. Работа с новым материалом: объяснение.

Объяснение смысла отношения приращения функции к приращению аргумента

Объяснение геометрического смысла производной.

Введение нового материала посредством словесных объяснений с привлечением образов и наглядных средств: мультимедийной презентации с анимацией.

Восприятие объяснения, понимание, ответы на вопросы учителя.

Формулирование вопроса преподавателю в случае затруднения.

Восприятие новой информации, её первичное понимание и осмысление.

Формулирование вопросов преподавателю в случае затруднения.

Создание конспекта.

Формулирование геометрического смысла производной.

Рассмотрение трех случаев.

Конспектирование, выполнение рисунков.

4. Работа с новым материалом.

Первичное осмысление и применение изученного материала, его закрепление.

В каких точках производная положительна?

Отрицательна?

Равна нулю?

Обучение поиску алгоритма ответов на поставленные вопросы по графику.

Понимание и осмысление и применение новой информации для решения задачи.

5. Первичное осмысление и применение изученного материала, его закрепление.

Сообщение условия задачи.

Запись условия задачи.

Формулирование вопроса преподавателю в случае затруднения

6. Применение знаний: самостоятельная работа обучающего характера.

Решите задачу самостоятельно:

Применение полученных знаний.

Самостоятельная работа по решению задачи на нахождение производной по рисунку. Обсуждение и сверка ответов в паре, формулирование вопроса преподавателю в случае затруднения.

7. Работа с новым материалом: объяснение.

Вывод уравнения касательной к графику функции в точке.


Подробное объяснение вывода уравнения касательной к графику функции в точке с привлечением в качестве наглядности в виде мультимедийной презентации, ответы на вопросы учащихся.

Вывод уравнения касательной совместно с преподавателем. Ответы на вопросы преподавателя.

Конспектирование, создание рисунка.

8. Работа с новым материалом: объяснение.

В диалоге со студентами вывод алгоритма нахождения уравнения касательной к графику данной функции в данной точке.

В диалоге с преподавателем вывод алгоритма нахождения уравнения касательной к графику данной функции в данной точке.

Конспектирование.

Сообщение условия задачи.

Обучение применению полученных знаний.

Организация поиска путей решения задачи и их реализация. подробный разбор решения с объяснением.

Запись условия задачи.

Выдвижение предположений о возможных путях решения задачи при реализации каждого пункта плана действий. Решение задачи совместно с преподавателем.

Запись решения задачи и ответа.

9. Применение знаний: самостоятельная работа обучающего характера.

Индивидуальный контроль. Консультирование и помощь студентам по мере необходимости.

Проверка и объяснение решения с использованием презентации.

Применение полученных знаний.

Самостоятельная работа по решению задачи на нахождение производной по рисунку. Обсуждение и сверка ответов в паре, формулирование вопроса преподавателю в случае затруднения

10. Домашнее задание.

§48, задачи 1 и 3, разобраться в решении и записать его в тетрадь, с рисунками.

№ 860 (2,4,6,8),

Сообщение домашнего задания с комментариями.

Запись домашнего задания.

11. Подведение итогов.

Повторили определение производной; физический смысл производной; свойства линейной функции.

Узнали, в чём заключается геометрический смысл производной.

Научились выводить уравнение касательной к графику данной функции в данной точке.

Корректировка и уточнение итогов урока.

Перечисление итогов урока.

12. Рефлексия.

1. Вам было на уроке: а) легко; б) обычно; в) трудно.

а) усвоил(а) полностью, могу применить;

б) усвоил(а), но затрудняюсь в применении;

в) не усвоил(а).

3. Мультимедийная презентация на уроке:

а) помогала усвоению материала; б) не помогала усвоению материала;

в) мешала усвоению материала.

Проведение рефлексии.

Лекция: Понятие о производной функции, геометрический смысл производной


Понятие о производной функции

Рассмотрим некоторую функцию f(x), которая будет непрерывной на всем промежутке рассмотрения. На рассматриваемом промежутке выберем точку х 0 , а также величину функции в данной точке.


Итак, давайте рассмотрим график, на котором отметим нашу точку х 0 , а также точку (х 0 + ∆х). Напомним, что ∆х – это расстояние (разница) между двумя выбранными точками.


Так же стоит понимать, что каждому х соответствует собственное значение функции у.

Разница значений функции в точке х 0 и (х 0 + ∆х) называется приращением данной функции: ∆у = f(х 0 + ∆х) - f(х 0).


Давайте обратим внимание на дополнительную информацию, которая имеется на графике – это секущая, которая названа КL, а также треугольник, который она образует с интервалами KN и LN.


Угол, под которым находится секущая, называется её углом наклона и обозначается α. Легко можно определить, что градусная мера угла LKN так же равна α.


А теперь давайте вспомним соотношения в прямоугольном треугольнике tgα = LN / KN = ∆у / ∆х.

То есть тангенс угла наклона секущей равен отношению приращения функции к приращению аргумента.


В свое время, производная – это предел отношения приращения функции к приращению аргумента на бесконечно малых интервалах.

Производная определяет скорость, с которой происходит изменение функции на некотором участке.


Геометрический смысл производной


Если найти производную любой функции в некоторой точке, то можно определить угол, под которым будет находится касательная к графику в данной токе, относительно оси ОХ. Обратите внимание на график – угол наклона касательно обозначается буквой φ и определяется коэффициентом k в уравнении прямой: y = kx + b.


То есть можно сделать вывод, что геометрическим смыслом производной является тангенс угла наклона касательной в некоторой точке функции.

Цели урока:

Учащиеся должны знать:

  • что называется угловым коэффициентом прямой;
  • углом между прямой и осью Ох;
  • в чем состоит геометрический смысл производной;
  • уравнение касательной к графику функции;
  • способ построения касательной к параболе;
  • уметь применять теоретические знания на практике.

Задачи урока:

Образовательные: создать условия для овладения учащимися системы знаний, умений и навыков с понятиями механический и геометрический смысл производной.

Воспитательные: формировать у учащихся научное мировоззрение.

Развивающие: развивать у учащихся познавательный интерес, творческие способности, волю, память, речь, внимание, воображение, восприятие.

Методы организации учебно-познавательной деятельности:

  • наглядные;
  • практические;
  • по мыслительной деятельности: индуктивный;
  • по усвоению материала: частично-поисковый, репродуктивный;
  • по степени самостоятельности: лабораторная работа;
  • стимулирующие: поощрения;
  • контроля: устный фронтальный опрос.

План урока

  1. Устные упражнения (найти производную)
  2. Сообщение ученика на тему “Причины появления математического анализа”.
  3. Изучение нового материала
  4. Физ. Минутка.
  5. Решение заданий.
  6. Лабораторная работа.
  7. Подведение итогов урока.
  8. Комментирование домашнего задания.

Оборудование: мультимедийный проектор (презентация), карточки (лабораторная работа).

Ход урока

“Человек лишь там чего – то добивается, где он верит в свои силы”

Л. Фейербах

I. Организационный момент.

Организация класса в течение всего урока, готовность учащихся к уроку, порядок и дисциплина.

Постановка целей учения перед учащимися, как на весь урок, так и на отдельные его этапы.

Определить значимость изучаемого материала как в данной теме, так и во все курсе.

Устный счет

1. Найдите производные:

" , ()" , (4sin x)", (cos2x)", (tg x)", "

2. Логический тест.

а) Вставить пропущенное выражение.

5х 3 -6х 15х 2 -6 30х
2sinx 2cosx
cos2x … …

II. Сообщение ученика на тему “Причины появления математического анализа”.

Общее направление развития науки, в конечном счете, обусловлено требованиями практики человеческой деятельности. Существование древних государств со сложной иерархической системой управления было бы невозможно без достаточного развития арифметики и алгебры, ибо сбор податей, организация снабжения армии, строительство дворцов и пирамид, создание оросительных систем требовали выполнения сложных расчетов. В эпоху Возрождения расширяются связи между различными частями средневекового мира, развиваются торговля и ремесла. Начинается быстрый подъем технического уровня производства, промышленное применение получают новые источники энергии, не связанные с мускульными усилиями человека или животных. В XI-XII столетии появляются сукновальные и ткацкие станки, а в середине XV - печатный станок. В связи с потребностью в быстром развитии общественного производства в этот период изменяется сущность естественных наук, носивших со времен древности описательный характер. Целью естествознания становится углубленное изучение естественных процессов, а не предметов. Описательному естествознанию древности соответствовала математика, оперировавшая постоянными величинами. Необходимо было создать математический аппарат, который давал бы описание не результата процесса, а характера его течения и свойственных ему закономерностей. В итоге к концу XII столетия, Ньютон в Англии и Лейбниц в Германии завершили первый этап создания математического анализа. Что же такое “математический анализ”? Как можно охарактеризовать, предсказать особенности протекания любого процесса? Использовать эти особенности? Глубже проникать в сущность того или иного явления?

III. Изучение нового материала.

Пойдем по пути Ньютона и Лейбница и посмотрим, каким способом можно анализировать процесс, рассматривая его как функцию времени.

Введем несколько понятий, которые помогут нам в дальнейшем.

Графиком линей ной функции y=kx+ b является прямая, число k называют угловым коэффициентом прямой. k=tg, где – угол прямой, то есть угол между этой прямой и положительным направлением оси Ох.

Рисунок 1

Рассмотрим график функции у=f(х). Проведем секущую через любые две точки, например, секущую АМ. (Рис.2)

Угловой коэффициент секущей k=tg. В прямоугольном треугольнике АМС <МАС = (объясните почему?). Тогда tg = = , что с точки зрения физики есть величина средней скорости протекания любого процесса на данном промежутке времени, например, скорости изменения расстояния в механике.

Рисунок 2

Рисунок 3

Сам термин “скорость” характеризует зависимость изменения одной величины от изменения другой, и последняя необязательно должна быть временем.

Итак, тангенс угла наклона секущей tg = .

Нас интересует зависимость изменения величин в более короткий промежуток времени. Устремим приращение аргумента к нулю. Тогда правая часть формулы – производная функции в точке А (объясните почему). Если х –> 0, то точка М движется по графику к точке А, значит прямая АМ приближается к некоторой прямой АВ, которая является касательной к графику функции у = f(х) в точке А . (Рис.3)

Угол наклона секущей стремится к углу наклона касательной.

Геометрический смысл производной состоит в том, что значение производной в точке равно угловому коэффициенту касательной к графику функции в точке.

Механический смысл производной.

Тангенс угла наклона касательной есть величина, показывающая мгновенную скорость изменения функции в данной точке, то есть новая характеристика изучаемого процесса. Эту величину Лейбниц назвал производной , а Ньютон говорил, что производной называется сама мгновенная скорость .

IV. Физкультминутка.

V. Решение заданий.

№91(1) стр 91 – показать на доске.

Угловой коэффициент касательной к кривой f(х) = х 3 в точке х 0 – 1 есть значение производной этой функции при х = 1. f’(1) = 3х 2 ; f’(1) = 3.

№91 (3,5) – под диктовку.

№92(1) – на доске по желанию.

№ 92 (3) – самостоятельно с устной проверкой.

№92 (5) – за доской.

Ответы: 45 0 , 135 0 , 1,5 е 2 .

VI. Лабораторная работа.

Цель: отработка понятия “механический смысл производной”.

Приложения производной к механике.

Задан закон прямолинейного движения точки х = х(t), t.

  1. Среднюю скорость движения на указанном отрезке времени;
  2. Скорость и ускорение в момент времени t 04
  3. Моменты остановки; продолжает ли точка после момента остановки двигаться в том же направлении или начинает двигаться в противоположном направлении;
  4. Наибольшую скорость движения на указанном отрезке времени.

Работа выполняется по 12 вариантам, задания дифференцированы по уровню сложности (первый вариант - наименьший уровень сложности).

Перед началом работы беседа по вопросам:

  1. Каков физический смысл производной перемещения? (Скорость).
  2. Можно ли найти производную скорости? Используется ли эта величина в физике? Как она называется? (Ускорение).
  3. Мгновенная скорость равна нулю. Что можно сказать о движении тела в это момент? (Это момент остановки).
  4. Каков физический смысл следующих высказываний: производная движения равна нулю в точке t 0; при переходе через точку t 0 производная меняет знак? (Тело останавливается; меняется направление движения на противоположное).

Образец выполнения работы учащимся.

х(t)= t 3 -2 t 2 +1, t 0 = 2.

Рисунок 4

В противоположном направлении.

Начертим схематично график скорости. Наибольшая скорость достигается в точке

t=10, v (10) =3· 10 2 -4· 10 =300-40=260

Рисунок 5

VII. Подведение итогов урока

1) В чем состоит геометрический смысл производной?
2) В чем состоит механический смысл производной?
3) Сделайте вывод о своей работе.

VIII. Комментирование домашнего задания.

Стр.90. №91(2,4,6), №92(2,4,6,), стр. 92 №112.

Используемая литература

  • Учебник Алгебра и начала анализа.
    Авторы: Ю.М. Колягин, М.В. Ткачева, Н.Е. Федорова, М.И. Шабунина.
    Под редакцией А. Б. Жижченко.
  • Алгебра 11 класс. Поурочные планы по учебнику Ш. А. Алимова, Ю. М. Колягина, Ю. В. Сидорова. Часть 1.
  • Интернет-ресурсы: http://orags.narod.ru/manuals/html/gre/12.jpg