Основные положения статики. Аксиомы статики Равновесие в произвольных системах сил

Условия, при которых тело может находиться в равновесии, выводиться из нескольких основных положений, применяемых без доказательств, но подтвержденных опытом и называемых аксиомами статики . Основные аксиомы статики сформулированы выдающимся английским ученым Исааком Ньютоном и поэтому названы его именем.

Аксиома I (аксиома инерции, или первый закон Ньютона). Всякое тело сохраняет свое состояние покоя или прямолинейного равномерного движения до тех пор, пока какие – нибудь силы не выведут тело из этого состояния.

Способность материального тела сохранять движение при отсутствии действующих сил или постепенно изменять это движение, когда на тело начинают действовать силы, называется инерцией или инертностью . Инертность есть одно из основных свойств материи.

В соответствии с этой аксиомой состоянием равновесия считается такое состояние, когда тело находиться в покое или движется прямолинейно и равномерно, т.е. по инерции.

Аксиома II (аксиома взаимодействия, или третий закон Ньютона). Силы взаимодействия двух тел всегда равны по модулю (| F 1 | = |F 2 | или )и направлены по одной прямой и в противоположные стороны.

Рис. 1.2 Из третьего закона Ньютона вытекает, что одностороннего механического действия одного тела на другое не существует, т.е. силы взаимодействия – силы парные. Однако сила действия одного тела на другое и сила противодействия не представляет собой систему сил, т.к. они приложены к разным телам.

Аксиома III (закон равенства действия и противодействия). Для равновесия свободного твердого тела, находящегося под действием двух сил, необходимо и достаточно, чтобы эти силы были равны по модулю и действовали по одной прямой в противоположные стороны.

Закон о равенстве действия и противодей­ствия является одним из основных законов механики. Из него следует, что если тело А дей­ствует на тело В с силой , то одновременно тело В действует на тело А с такой же по модулю и направленной вдоль той же прямой, но противоположную сторону силой = (рис. 1.3). Однако силы и не образуют урав­новешенной системы сил, так как они приложены к разным телам.

рис. 1.3.

Аксиома IV (принцип присоединения и отбрасывания систем сил, эквивалентной нулю). Всякую силу, действующую на абсолютно твердое тело, можно перенести вдоль линии ее действия в любую точку, не нарушив при этом его механического состояния.

Следствие из 2-й и 4-й аксиом. Действие силы на абсо­лютно твердое тело не изменится, если перенести точку при­ложения силы вдоль ее линии действия в любую другую точку тела.

В самом деле, пусть на твердое тело действует приложенная в точке А сила (рис. 1.4). Возьмем на линии действия этой силы произвольную точку В и приложим к ней две уравновешенные силы и , такие, что = , = . От этого действие силы на тело не изменится.

Но силы и со­гласно аксиоме 2 рис. 1.4.

также образуют уравновешенную систему, которая может быть отброшена. В резуль­тате на тело будет действовать только одна сила , равная , но приложен­ная в точке В .

Таким образом, вектор, изобра­жающий силу , можно считать приложенным в любой точке на линии действия силы (такой вектор называется скользящим).

Аксиома V (правило параллелограмма). Равнодействующая двух сил, приложенных к телу в одной точке, приложена в той же точке, равна по модулю и совпадает по направлению с диагональю параллелограмма, построенного на данных силах.

Вектор , равный диагонали параллелограмма, построенного на векторах и (рис.12), называется геометрической суммой векторов и : = + .

Величина равнодействующей

Конечно, Такое равен­ство будет соблюдаться только при условии, что эти силы направлены по одной пря­мой в одну сторону. Если же векторы сил окажутся перпендикулярными, рис. 1.5

Следовательно, аксиому 3 можно еще формулировать так: две силы, приложенные к телу в одной точке, имеют равнодействую­щую, равную геометрической (векторной) сумме этих сил и прило­женную в той же точке.

Аксиома 5 (принцип отвердевания). Равновесие изме­няемого (деформируемого) тела, находящегося под действием дан­ной системы сил, не нарушится, если тело считать отвердевшим (абсолютно твердым).

Высказанное в этой аксиоме утверждение очевидно. Например, ясно, что равновесие цепи не нарушится, если ее звенья считать сва­ренными друг с другом и т. д.

1.1.Задачи статики .

Теоретическая механика изучает движение тел при их взаимодействии с другими телами. Под движением понимается изменение положения тела в пространстве со временем относительно некоторого другого тела, с которым связывается система отсчета. Если же положение тела не меняется, то говорят, что оно находится в покое. Равновесием же называется состояние покоя либо равномерного и прямолинейного движения. Таким образом, состояние покоя является частным случаем равномерного и прямолинейного движения. Раздел механики, изучающий условия равновесия, называется статикой.

В качестве тел рассматриваются материальные точки, абсолютно твердые тела, а также конструкции, из них состоящие. Мерой взаимодействия тел называется сила, являющаяся векторной величиной. Ее действие характеризуется модулем, направлением и точкой приложения. Введение понятия силы позволяет свести задачу о движении тела под действием приложенной к нему системы сил.

В статике решаются две основные задачи. Первая состоит в замене данной системы сил эквивалентной ей системой сил, вторая же заключается в формулировании условий равновесия тела под действием данной системы сил.

Если система сил эквивалентна одной силе, ее называют равнодействующей. Система называется уравновешенной, когда тело под ее действием находится в равновесии.

1.2. Аксиомы статики.

Статика формулируется на основе следующих аксиом.

Аксиома 1. Абсолютно твердое тело находится в равновесии под действием двух сил тогда и только тогда, когда эти силы равны по модулю, противоположно направлены и линии их действия совпадают.

Аксиома 2. Действие данной системы сил на абсолютно твердое тело не изменится, если к ней прибавить или отнять уравновешенную систему сил.

Аксиома 3 (аксиома параллелограмма сил). Две силы, приложенные к телу в одной точке, имеют равнодействующую, приложенную в той же точке и равную их геометрической сумме.

Аксиома 4 (третий закон Ньютона). Силы, с которыми действуют друг на друга два тела, равны по модулю, противоположны по направлению и линии их действия совпадают.

Аксиома 5 (принцип отвердевания). Если деформируемое тело находится в равновесии, то это равновесие не нарушится при замене исходного тела или его части абсолютно твердым.

Следствия аксиом

1.Точку приложения силы можно переносить вдоль линии ее действия.

2.Внутренние силы, действующие на абсолютно твердое тело, взаимно уравновешиваются.

1.3. Связи, реакции связей, аксиома связей. Тело называется свободным, если оно может совершать любое перемещение в пространстве. На движение рассматриваемого тела могут накладывать ограничения другие тела, которые называются связями. Сила, с которой связь действует на тело, называется силой реакции связи. Эта сила направлена в сторону, противоположную той, куда связь не дает перемещаться данному телу. Силы, не являющиеся реакциями связей, называют активными. Приведем типы связей, используемых в дальшейшем.

1. Гладкая поверхность (без трения). Связь не дает перемещаться телу по направлению общей нормали к соприкасающимся в точке касания поверхностям, реакция связи направлена по этой нормали.

2. Гладкая поверхность с угловой точкой (ребро). Реакция связи перпендикулярна опирающейся поверхности, поскольку вдоль этой поверхности гладкое ребро не препятствует движению.

3. Идеальная нить (гибкая, невесомая, нерастяжимая). Нить не дает телу двигаться вдоль линии AB от точки подвеса. Реакция N поэтому направлена вдоль AB к точке подвеса.

4. Подвижный цилиндрический шарнир. Поскольку этот тип связи не препятствует движению в направлении поверхности опирания, то сила реакции всегда направлена по нормали к ней.

5.Неподвижный цилиндрический шарнир. В простейшем случае представляет собой болт, на который засажена втулка, жестко крепленная со связуемым телом. Сила реакции может иметь любое направление в плоскости чертежа, а поэтому ее ищут в виде взаимно перпендикулярных составляющих Nax Nay.

6.Неподвижный сферический шарнир. Тело, укрепленное при помощи сферического шарнира, может вращаться вокруг точки крепления, но ему запрещены поступательные движения вдоль трех взаимно перпендикулярных осей. В соответствии с этим направление реакции N не определено, и она может быть представлена тремя взаимно перпендикулярными состовляющими.

7.Идеальный стержень (жесткий, невесомый стержень, на концах которого шарниры). Такая связь не мешает конструкции перемещаться перпендикулярно стержню, поэтому сила реакции направлена вдоль него.

Аксиома 6. Всякое несвободное тело можно рассматривать как свободное, если отбросить связи и заменить их действие силами реакций связей.

2.Система сходящихся тел

Системой сходящихся сил (ССС) называется система сил, линии действия которых пересекается в одной точке.

2.1.Теорема о равнодействующей ССС. Система сходящихся сил имеет равнодействующую, равную геометрической сумме этих сил и проходящую через точку пересечения их линий действия.

2.2.Условия равновесия ССС. Тело, на которое действует система сходящихся сил (F1,F2…,Fn), находится в равновесии, если их равнодействующая равно нулю, R=0. Геометрически условие означает, что многоугольник данных сил является замкнутым.

2.3.Теорема о трех силах. Если твердое тело находится в равновесии под действием трех сил, причем линии действия двух из них пересекаются, то это система сходящихся тел.

2.4.Статически определимые и статически неопределимые задачи. Если в данной задаче число неизвестных величин не превышает числа линейно независимых уравнений равновесия, то она называется статически определимой, в противном случае – статически неопределимой.

3.Система параллельных сил

Силы, линии действия которых параллельны, образуют систему параллельных сил.

3.1.Теоремы о сложении двух параллельных сил

Теорема 1. Система двух параллельных сил, направленных в одну сторону, имеет равнодействующую, которая по модулю равна сумме модулей данных сил, параллельна им и направлена в ту же сторону. Линия действия равнодействующей проходит через точку C, которая делит отрезок AB внутренним образом на части, обратно пропорциональные модулям данных сил.

Теорема 2. Система двух не равных по модулю сил, линии действия которых параллельны, но силы направлены противоположно, имеет равнодействующую, которая равна по модулю разности модулей этих сил, им параллельна и направлена в сторону большей силы. Линия действия равнодействующей проходит через точку C, которая лежит на продолжении отрезка AB и делит его внешним образом на части, обратно пропорциональные модулям сил.

3.2.Центр системы параллельных сил. Равнодействующая системы n параллельных сил (P1,…,Pn), направленных в одну сторону, равна их сумме и приложена в точке C, определяемая радиус-вектором. Точка C называется центром параллельных сил. Если повернуть данные силы на один и тот же угол, сохраняя их точки приложения, то и равнодействующую этих сил повернется на тот же угол, причем положение центра параллельных сил не изменится.

3.3.Центр тяжести и методы его определения. Точка приложения равнодействующей сил тяжести, действующая на тело, называется центром тяжести тела.

1.Метод симметрии. Если однородное тело имеет плоскость или ось симметрии, то его центр тяжести лежит соответственно или в плоскости симметрии, или на оси симметрии. Если же тело имеет центр симметрии, то его центр тяжести находится в этом центре.

2.Метод разбиений. Если тело можно разбить на конечное число таких частей, для каждой из которых положение центра тяжести известно, то центр тяжести всего тела определяется по формуле.

2.Метод дополнений (отрицательных весов). Этот метод является частным случаем метода разбиений. Он применяется к телам, имеющим вырезы.

3.4. Распределенные силы. Силу, приложенную в точке, называют сосредоточенной. Силы же, распределенные по определенному закону по некоторому объему, поверхности или линии, называют распределенными (распределенными нагрузками). Если распределенная нагрузка представляет собой систему параллельных сил, то определение ее равнодействующей проводится так же, как и для силы тяжести. В частности, если сила равномерно с интенсивностью q распределена вдоль отрезка прямой AB=L , то ее равнодействующая равна Q=qL и приложена в середине отрезка AB. Если силы распределены по линейному закону так, что основание снова равно AB=L, то Q=qL/2, а приложена она на расстоянии L/3 от конца B.

4.Момент силы относительно точки и оси

4.1. Момент силы относительно точки. Моментом силы F относительно точки О называется вектором Mo(F), равный векторному произведению радиус-вектора точки приложения силы и самой силы

4.2. Теорема Вариньона. Момент равнодействующей системы сил относительно произвольной точки О равен векторной сумме моментов слагаемых сил относительно той же точки.

4.3.Момент силы относительно оси. Моментом силы F относительно оси Оz называется скалярная величина, равная алгебраическому моменту проекции Fxy этой силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с этой плоскостью. Знак «плюс» берется, если с положительной стороны оси Оz вращение, которое сила Fxy стремится совершить, видно происходящим против хода часовой стрелки, а знак «минус»- в противном случае.

Теорема. Моменты сил относительно осей в системе координат Oxzy равны проекциям момента силы относительно начала координат О.

Момент относительно оси равен нулю, когда сила параллельна оси (Fxy=0), или линия действия силы пересекает ось (h=0).

5.Пара сил

5.1.Пара сил, момент пары. Система двух сил F1 и F2, равных по величине и противоположных по направлению, линия действия которых не совпадают, называется парой сил. Пара сил не имеет равнодействующей. Расстояние между линиями действия сил пары называется плечом пары. Моментом пары называется вектор М, модуль которого равен произведению модуля одной из сил пары на плечо пары M=Fd.Направлен этот вектор перпендикулярно плоскости действия пары в сторону, откуда вращение пары видно происходящим против хода часовой стрелки. Момент пары можно еще определить как момент одной из сил пары относительно точки приложения другой силы. Для пар сил, расположенных в одной плоскости, как и для обычных сил, часто используют понятие алгебраического момента пары M=+-Fd. Знак плюс берется, если пара стремится повернуть тело против хода часовой стрелки, минус- по ходу.

5.2. Теорема об эквивалентности пар. Все пары сил, имеющие один и тот же момент, эквивалентны.

Из этой теоремы следует, что пара сил полностью определяется ее моментом. Располагать пару сил в пространстве можно в любом месте.

5.3. Теорема о сложении пар. Действие на тело системы пар моментов M1, M2,… Mn эквивалентно действию одной пары с моментом.

5.4.Жесткая заделка. Так называется связь которая возникает, например, если один конец балки жестко зацементировать неподвижно в стенку. Этот тип связи не позволяет вообще как-либо двигаться закрепленному телу. Поэтому реакция связи не позволяет вообще как-либо двигаться закрепленному телу. Поэтому реакция связи- сила и пара сил. Для плоской системы сил полная реакция жесткой заделки складывается из силы N с составляющими Nx, Ny и момента жесткой заделки mA относительно места заделки А.

6.Приведение произвольной системы сил к центру

6.1.Лемма о параллельном переносе силы. Силу F, приложенную в точке А твердого тела, можно перенести параллельно в точку В, добавив при этом пару сил, момент которой равен моменту переносимой силы относительно новой точки приложения.

6.2.Главный вектор и главный момент. Главным вектором сил (F1,…,Fn) называется вектор, равный их сумме. Главным моментом этой системы сил относительно точки А называется вектор, равный сумме их моментов этой же точки.

6.3.Основная теория статики. Произвольную систему сил, действующую на твердое тело, можно заменить ее главным вектором, приложенным в произвольно выбранной точке (центре произведения), и парой сил с моментом, равным главному моменту системы сил относительно этой точки.

6.4.Частные случаи приведения. Согласно теореме 6.3. произвольная система сил может быть эквивалентно заменена одной силой (главным вектором) и парой (главным моментом).Здесь возможны следующие частные случаи.

1. Если R равен нулю, Мо равен нулю, то система сил уравновешена и тело находится в равновесии.

2. Если R не равен нулю, Мо равен нулю, то система сил приводится к равнодействующей, проходящей через точку О.

3. Если R равен нулю, Мо не равен нулю, то система сил приводится к паре с моментом Мо и главные моменты сил относительно любых точек равны.

4.Если R не равен нулю, Мо не равен нулю, но R перпендикулярно Мо, то система сил также приводится к равнодействующей.

5. Если R не равен нулю, Мо не равен нулю, но R параллельно Мо, то такая совокупность силы и пары сил называется динамой, а прямая, вдоль которой направлены векторы,- осью динамы. Главный момент сил принимает наименьшее значение на оси динамы.

6.В общем случае, когда R не равен Мо не равно нулю, но векторы Mо и R не перпендикулярны и не параллельны, система сил также приводится к силовой динаме. Если произвольная система сил не уравновешенна, то она сводиться либо к паре сил, либо к равнодействующей, либо к динаме.

6.7.Равновесие составной конструкции. При рассмотрении равновесия конструкции можно, освободившись от связей, рассмотреть равновесие каждого из тел и составить для них уравнения равновесия. В эти уравнения наряду с активными силами войдут также и силы реакций внешних и внутренних связей. Если общее число независимых уравнений больше или равно общему числу неизвестных задачи, то такая конструкция будет статически определимой. Можно также, используя аксиому 5 (принцип отвердевания), рассмотреть равновесие всей конструкции либо какой-нибудь ее части. При составлении уравнений равновесия следует иметь ввиду, что силы реакций внутренней связи, соединяющей два элемента конструкции, действующие на каждый из элементов, согласно аксиоме 4, равны по величине и противоположно направлены.

7.Равновесие при наличии трения

Сила реакции шероховатой поверхности R=N+F складывается из силы нормальной реакции N и перпендикулярной к ней силы трения F. Сила трения может действовать как на покоящееся, так и на движущееся тело. В связи с этим различают трение покоя и трение скольжения. Сила трения покоя F может принимать любые значения от нуля до некоторого максимального, называемого предельной силой трения покоя. Направлена F в сторону противоположную той, куда действующие активные силы стремятся сдвинуть тело. Предельная сила трения пропорциональна нормальной составляющей силы реакции N шероховатой поверхности (закон Кулона). Коэффициент трения покоя f (статический коэффициент трения) определяется лишь свойствами материалов соприкасающихся тел и не зависит от площади контакта этих тел. При решении задач с учетом трения покоя важно определить вначале, какое равновесие рассматривается- предельное или не предельное. Если равновесие предельное, то из двух неизвестных величин N и F в силу связи F=fN остается только одна. Если же равновесие непредельное, то обе эти величины неизвестны, а неравенство F меньше или равно fN является необходимым условием равновесия.

Сила трения скольжения также определяется законом Кулона, однако коэффициент трения скольжения обычно существенно меньше коэффициента трения покоя.

1.Необходимо установить, равновесие какого тела следует рассмотреть.

2.Освободить исследуемое тело от связей и изобразить действующее на него активные силы реакций отброшенных связей.

3. Установить какая система сил действует на тело, и сформулировать условия равновесия этой системы.

4. Составить уравнения равновесия.

5.Если тел несколько, то следует рассмотреть другие тела, исходя из того чтобы в конечном счете общее число уравнений и неизвестных совпадало.

6.Решить уравнения равновесия и определить тем самым искомые величины.

ОПРЕДЕЛЕНИЕ

Геометрия – это наука о пространственной форме и количественных характеристиках предметов реального мира.

Построение геометрии как науки состоит из выбора основных геометрических понятий, формулирование основных свойств для этих геометрических понятий с помощью утверждений, которые считаются истинными без доказательства и построение других понятий. Такое построение называют аксиоматическим .

ОПРЕДЕЛЕНИЕ

Аксиома – это утверждение, принимающееся как истинное без доказательства.

Можно рассматривать геометрию на плоскости и в пространстве. Геометрия на плоскости называется планиметрией, в пространстве – стереометрией.

Неопределяемыми или основными понятиями в планиметрии являются точка , прямая, а в стереометрии – точка, прямая и плоскость .

Основные аксиомы геометрии

Аксиомы геометрии можно разбить на пять групп.

1. Аксиомы принадлежности

1.1 Какова бы ни была прямая, существуют точки, принадлежащие ей и не принадлежащие ей.

1.2 Через любые две точки можно провести прямую и притом только одну.

1.3 Какова бы ни была плоскость, существуют точки, принадлежащие этой плоскости и точки, не принадлежащие ей.

2. Аксиомы расположения

2.1 Из трех точек на прямой одна и только одна лежит между двумя другими.

2.3 Если две различные прямые имеют общую точку, то через них можно провести плоскость и притом только одну.

2.4 Если две различные плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку.

3. Аксиомы измерения

3.1 Каждый отрезок имеет определенную длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой.

3.2 Каждый угол имеет определенную градусную меру, большую нуля. Развернутый угол равен . Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.

4. Аксиомы откладывания.

4.1 На любой полупрямой от ее начальной точки можно отложить отрезок заданной длины и притом только один.

4.2 От любой полупрямой в заданную полуплоскость можно отложить угол, с заданной градусной мерой, меньшей и притом только один.

4.3 Каков бы ни был треугольник, существует треугольник, равный ему, в заданном расположении относительно данной полупрямой.

5. Аксиома параллельности.

5.1 Через точку, не лежащую на данной прямой можно провести не более одной прямой, параллельной данной.

Примеры решения задач

ПРИМЕР 1

Задание Две плоскости и пересекаются по прямой . Прямые и пересекаются. Где находится точка пересечения прямых и ?

Решение Если две плоскости пересекаются по прямой, то все точки этой прямой принадлежат одновременно и первой и второй плоскостям. Поскольку прямые и лежат в разных плоскостях и при этом пересекаются, значит, точка их пересечения принадлежит обеим плоскостям и, очевидно, лежит на прямой .
Ответ Точка пересечения прямых и находится на прямой .

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Все теоремы и уравнения статики выводятся из нескольких исходных положений, принимаемых без математических доказательств и называемых аксиомами или принципами статики. Аксиомы статики представляют собою результат обобщений многочисленных опытов и наблюдений над равновесием и движением тел, неоднократно подтвержденных практикой. Часть из этих аксиом является следствиями основных законов механики, с которыми мы познакомимся в динамике.

Аксиома 1. Если на свободное абсолютно твердое тело действуют две силы, то тело может находиться в равновесии тогда и только тогда, когда эти силы равны по модулю (F 1 = F 2) и направлены вдоль одной прямой в противоположные стороны (рис. 10).

Аксиома 1 определяет простейшую уравновешенную систему сил, так как опыт показывает, что свободное тело, на которое действует только одна сила, находиться в равновесии не может.

Аксиома 2. Действие данной системы, сил на абсолютно твердое тело не изменится, если к ней прибавить или от нее отнять уравновешенную систему сил.

Эта аксиома устанавливает, что две системы сил, отличающиеся на уравновешенную систему, эквивалентны друг другу.

Следствие из 1-й и 2-й аксиом. Действие силы на абсолютно твердое тело не изменится, если перенести точку приложения силы вдоль ее линии действия в любую другую точку тела.

аксиома статика центр тяжести

В самом деле, пусть на твердое тело действует приложенная в точке А сила (рис.11). Возьмем на линии действия этой силы произвольную точку В и приложим к ней две уравновешенные силы и, такие, что, . От этого действие силы на тело не изменится. Но силы и согласно аксиоме 1 также образуют уравновешенную систему, которая может быть отброшена. В результате на тело. Будет действовать только одна сила, равная, но приложенная в точке В .

Таким образом, вектор, изображающий силу, можно считать приложенным в любой точке на линии действия силы (такой вектор называется скользящим).

Аксиома 3 (аксиома параллелограмма сил). Две силы, приложенные к телу в одной точке, имеют равнодействующую, приложенную в той же точке и изображаемую диагональю параллелограмма, построенного на этих силах, как на сторонах.

Вектор, равный диагонали параллелограмма, построенного на векторах и (рис.12), называется геометрической суммой векторов и:

Величина равнодействующей

Конечно, Такое равенство будет соблюдаться только при условии, что эти силы направлены по одной прямой в одну сторону. Если же векторы сил окажутся перпендикулярными, то

Следовательно, аксиому 3 можно еще формулировать так: две силы, приложенные к телу в одной точке, имеют равнодействующую, равную геометрической (векторной) сумме этих сил и приложенную в той же точке.

Аксиома 4. При всяком действии одного материального тела на другое имеет место такое же по величине, но противоположное по направлению противодействие.

Закон о равенстве действия и противодействия является одним из основных законов механики. Из него следует, что если тело А действует на тело В с силой, то одновременно тело В действует на тело А с такой же по модулю и направленной вдоль той же прямой, но противоположную сторону силой (рис. 13). Однако силы и не образуют уравновешенной системы сил, так как они приложены к разным телам.

Аксиома 5 (принцип отвердевания). Равновесие изменяемого (деформируемого) тела, находящегося под действием данной системы сил, не нарушится, если тело считать отвердевшим (абсолютно твердым).

Высказанное в этой аксиоме утверждение очевидно. Например, ясно, что равновесие цепи не нарушится, если ее звенья считать сваренными друг с другом и т. д.

Систе м ма сходя м щихся сил -- это такая система сил, действующих на абсолютно твёрдое тело, в которой линии действия всех сил пересекаются в одной точке.

Такая система сил является на плоскости статически определимой, если число неизвестных сил в ней не больше двух (а не трёх, как в других статически определимых системах)

В трёхмерном пространстве сходящаяся система сил является статически определимой, если число неизвестных сил в ней не превышает трёх.

Произвольная плоская система сил - это система сил, линии действия которых расположены в плоскости независимо.

Любая плоская произвольная система сил, действующих на абсолютно твердое тело, при приведении к произвольно избранному центру О, может быть заменена одной силой, равняющейся главному вектору системы и приложенной в центре приведения О, и одной парой с моментом, равняющемуся главному моменту системы относительно центра О.

Уравнения равновесия - это условия равновесия, в которые входят известные активные силы и неизвестные реакции связей, т.е. аналитические условия равновесия данной системы сил.

Задача называется статически определимой , если число неизвестных реакций связей равняется числу независимых уравнений равновесия.

Если для данной конструкции число всех реакций (неизвестных) будет больше количества уравнений, в которые входят реакции, то конструкция будет статически неопределимой .

В зависимости от взаимного движения тел трение между твердыми телами бывает трех видов:

· трение скольжения.

· трение качения;

· трение вращения.

Пространственная система сил. Система сил называется пространственной, если линии их действия расположены в пространстве произвольным образом. Для пространственных систем сил остаются справедливыми все те положения, которые были сформулированы для плоской системы сил.

Центр тяжести твердого тела

Центром тяжести твердого тела называется неизменно связанная с этим телом точка С , через которую проходит линия действия равнодействующей сил тяжести данного тела, при любом положении тела в пространстве.

Центр тяжести применяется при исследовании устойчивости положений равновесия тел и сплошных сред, находящихся под действием сил тяжести и в некоторых других случаях, а именно: в сопротивлении материалов и в строительной механике - при использовании правила Верещагина.

Существуют два способа определения центра тяжести тела: аналитический и экспериментальный. Аналитический способ определения центра тяжести непосредственно вытекает из понятия центра параллельных сил.

Координаты центра тяжести, как центра параллельных сил, определяются формулами:

где Р - вес всего тела; pk - вес частиц тела; xk, yk, zk - координаты частиц тела.

Для однородного тела вес всего тела и любой её части пропорционален объёму P=Vг , pk=vk г , где г - вес единицы объёма, V - объем тела. Подставляя выражения P , pk в формулы определения координат центра тяжести и, сокращая на общий множитель г , получим:

Точка С , координаты которой определяются полученными формулами, называется центром тяжести объема .

Если тело представляет собой тонкую однородную пластину, то центр тяжести определяется формулами:

где S - площадь всей пластины; sk - площадь её части; xk, yk - координаты центра тяжести частей пластины.

Точка С в данном случае носит название центра тяжести площади .

Числители выражений, определяющих координаты центра тяжести плоских фигур, называются статическими моментами площади относительно осей у и х :

Тогда центр тяжести площади можно определить по формулам:

Для тел, длина которых во много раз превышает размеры поперечного сечения, определяют центр тяжести линии. Координаты центра тяжести линии определяют формулами:

где L - длина линии; lk - длина ее частей; xk, yk, zk - координата центра тяжести частей линии.

Способы определения координат центров тяжести тел

Основываясь на полученных формулах, можно предложить практические способы определения центров тяжести тел.

1. Симметрия . Если тело имеет центр симметрии, то центр тяжести находится в центре симметрии.

Если тело имеет плоскость симметрии. Например, плоскость ХОУ, то центр тяжести лежит в этой плоскости.

2. Разбиение . Для тел, состоящих из простых по форме тел, используется способ разбиения. Тело разбивается на части, центр тяжести которых находится методом симметрии. Центр тяжести всего тела определяется по формулам центра тяжести объема (площади).

Пример . Определить центр тяжести пластины, изображенной на помещенном ниже рисунке. Пластину можно разбить на прямоугольники различным способом и определить координаты центра тяжести каждого прямоугольника и их площади.

Ответ: xc =17.0см; yc =18.0см.

Дополнение . Этот способ является частным случаем способа разбиения. Он используется, когда тело имеет вырезы, срезы и др., если координаты центра тяжести тела без выреза известны.

Пример . Определить центр тяжести круглой пластины, имеющей вырез радиусом r = 0,6 R

Круглая пластина имеет центр симметрии. Поместим начало координат в центре пластины. Площадь пластины без выреза

площадь выреза

Площадь пластины с вырезом

Пластина с вырезом имеет ось симметрии О1x , следовательно, yc =0.

4. Интегрирование . Если тело нельзя разбить на конечное число частей, положение центров тяжести которых известны, тело разбивают на произвольные малые объемы, для которых формула с использованием метода разбиения принимает вид:

Далее переходят к пределу, устремляя элементарные объемы к нулю, т.е. стягивая объемы в точки. Суммы заменяют интегралами, распространенными на весь объем тела, тогда формулы определения координат центра тяжести объема принимают вид:

Формулы для определения координат центра тяжести площади:

Координаты центра тяжести площади необходимо определять при изучении равновесия пластинок, при вычислении интеграла Мора в строительной механике.

Пример . Определить центр тяжести дуги окружности радиуса R с центральным углом АОВ = 2б (рис. 6.5).

Дуга окружности симметрична оси Ох , следовательно, центр тяжести дуги лежит на оси Ох , = 0.

Согласно формуле для центра тяжести линии:

Экспериментальный способ . Центры тяжести неоднородных тел сложной конфигурации можно определять экспериментально: методом подвешивания и взвешивания. Первый способ состоит в том, что тело подвешивается на тросе за различные точки. Направление троса на котором подвешено тело, будет давать направление силы тяжести. Точка пересечения этих направлений определяет центр тяжести тела.

Метод взвешивания состоит в том, что сначала определяется вес тела, например автомобиля. Затем на весах определяется давление заднего моста автомобиля на опору. Составив уравнение равновесия относительно какой- либо точки, например оси передних колес, можно вычислить расстояние от этой оси до центра тяжести автомобиля.

Иногда при решении задач следует применять одновременно разные методы определения координат центра тяжести.

Центры тяжести некоторых простейших геометрических фигур

Для определения центров тяжести тел часто встречающейся формы (треугольника, дуги окружности, сектора, сегмента) удобно использовать справочные данные.

Координаты центра тяжести некоторых однородных тел

Наименование фигуры

Дуга окружности : центр тяжести дуги однородной окружности находится на оси симметрии (координата уc =0).

R - радиус окружности.

Однородный круговой сектор уc =0).

где б - половина центрального угла; R - радиус окружности.

Сегмент : центр тяжести расположен на оси симметрии (координата уc =0).

где б - половина центрального угла; R - радиус окружности.

Полукруг :

Треугольник : центр тяжести однородного треугольника находится в точке пересечения его медиан.

где x1, y1, x2, y2, x3, y3 - координаты вершин треугольника

Конус : центр тяжести однородного кругового конуса лежит на его высоте и отстоит на расстояние 1/4 высоты от основания конуса.

Полусфера : центр тяжести лежит на оси симметрии.

Трапеция:

Площадь фигуры.

- площадь фигуры;

- площадь фигуры;

Размещено на Allbest.ru

...

Подобные документы

    Статика - розділ механіки, в якому вивчаються умови рівноваги механічних систем під дією прикладених до них сил і моментів. Історична довідка. Аксіоми статики. Паралелограм сил. Рівнодіюча сила. Закон про дію та протидію. Застосування законів статики.

    презентация , добавлен 07.11.2012

    Кинематика как раздел механики, в котором движение тел рассматривается без выяснения причин, его вызывающих. Способы определения координат центра тяжести. Статические моменты площади сечения. Изменение моментов инерции при повороте осей координат.

    презентация , добавлен 22.09.2014

    Линия действия силы. Основные аксиомы статики. Принцип освобождаемости от связей. Геометрический способ сложения сил. Разложить силу на составляющие. Теорема о проекции вектора суммы. Равновесие системы сходящихся сил. Момент силы относительно точки.

    презентация , добавлен 09.11.2013

    Понятие и история создания статики, вклад Архимеда в ее развитие. Определение первого условия равновесия тела по второму закону Ньютона. Сущность правила моментов сил, вычисление центра тяжести. Виды равновесия: устойчивое, неустойчивое, безразличное.

    презентация , добавлен 28.03.2013

    Аксиомы статики. Моменты системы сил относительно точки и оси. Трение сцепления и скольжения. Предмет кинематики. Способы задания движения точки. Нормальное и касательное ускорение. Поступательное и вращательное движение тела. Мгновенный центр скоростей.

    шпаргалка , добавлен 02.12.2014

    Определение реакций опор плоской составной конструкции, плоских ферм аналитическим способом. Определение скоростей и ускорений точек твердого тела при плоском движении, усилий в стержнях методом вырезания узлов. Расчет главного вектора и главного момента.

    курсовая работа , добавлен 14.11.2017

    Движение тела по эллиптической орбите вокруг планеты. Движение тела под действием силы тяжести в вертикальной плоскости, в среде с сопротивлением. Применение законов движения тела под действием силы тяжести с учетом сопротивления среды в баллистике.

    курсовая работа , добавлен 17.06.2011

    Основные задачи динамики твердого тела. Шесть степеней свободы твердого тела: координаты центра масс и углы Эйлера, определяющие ориентацию тела относительно центра масс. Сведение к задаче о вращении вокруг неподвижной точки. Описание теоремы Гюйгенса.

    презентация , добавлен 02.10.2013

    Определение равнодействующей плоской системы сил. Вычисление координат центра тяжести шасси блока. Расчёт на прочность элемента конструкции: построение эпюр продольных сил, прямоугольного и круглого поперечного сечения, абсолютного удлинения стержня.

    курсовая работа , добавлен 05.11.2009

    Динамические уравнения Эйлера при наличии силы тяжести. Уравнения движения тяжелого твердого тела вокруг неподвижной точки. Первые интегралы системы. Вывод уравнения для угла нутации в случае Лагранжа. Быстро вращающееся тело: псевдорегулярная прецессия.

  • 11.Векторный момент силы относительно центра. Выражение векторного момента силы в виде векторного произведения. Аналитическое выражение момента силы относительно центра.
  • 12. Момент силы относительно оси. Аналитическое выражение момента силы относительно оси.
  • 13. Связь между моментом силы относительно оси и векторным моментом силы относительно точки.
  • 9. Сложение параллельных сил.
  • 9. Пара сил. Векторный момент пары сил. Алгебраический момент пары сил.
  • 10. Свойства пар сил. Эквивалентность пар. Теоремы об эквивалентности пар.
  • 10. Сложение пар сил. Условие равновесия системы пар сил.
  • 15. Основная лемма статики о параллельном переносе силы.
  • 16. Основная теорема статики о приведении системы сил к заданному центру (теорема Пуансо). Главный вектор и главный момент системы сил.
  • 18. Инварианты приведения пространственной системы сил.
  • 20. Уравнения равновесия плоской системы сил.(Три формы).
  • 19. Статически определимые и неопределимые системы. Расчет составных конструкций.
  • 30. Распределенные нагрузки.
  • 22. Трение скольжения. Законы трения. Угол и конус трения. Условия равновесия тел на шероховатой поверхности.
  • 23. Угол и конус трения. Условия равновесия тела на шероховатой поверхности
  • 21. Расчет плоских ферм. Классификация ферм. Методы расчета плоских ферм. Леммы о нулевых стержнях.
  • 25. Случаи приведения пространственной системы сил к простейшему виду.
  • 17. Приведение системы сил к динаме. Уравнение центральной оси. Четыре случая приведения сил
  • 20. Уравнение равновесия пространственной системы сил. Частные случаи.
  • 25,26,29. Центр параллельных сил. Центр тяжести твердого тела. Центр тяжести однородного объема, площади, материальной линии. Статический момент площади относительно оси.
  • 27. Методы нахождения центра тяжести (симметрии, разбиения, дополнения).
  • 28. Центры тяжести дуги окружности и кругового сектора. Центр тяжести пирамиды.
  • 31.Предмет кинематики. Пространство и время в классической механике. Относительность движения. Траектория движения точки. Основная задача кинематики.
  • 33. Скорость точки при векторном способе задания движения.
  • 34. Ускорение точки при векторном способе задания движения.
  • 35. Скорость и ускорение при координатном способе задания движения.
  • 36. Скорость точки при естественном способе задания движения.
  • 37. Естественный трехгранник. Разложение ускорения по естественным осям. Касательное и нормальное ускорение.
  • 37. Частные случаи движения точки. Смысл касательного и нормального ускорения.
  • 39. Кинематика твердого тела. Виды движения твердого тела. Поступательное движение твердого тела.
  • 40. Вращательное движение твердого тела вокруг неподвижной оси. Уравнение вращательного движения тела. Угловая скорость и угловое ускорение.
  • 41. Равномерное и равнопеременное вращение
  • 42. Определение кинематических характеристик движения точек вращающегося тела. Траектории, закон движения. Скорость и ускорение точек вращающегося тела.
  • 43. Выражение скорости и ускорения точки вращающегося тела в виде векторных произведений.
  • 7. Теорема о трех силах
  • 8. Расчет усилий в стержнях фермы методом вырезания узлов
  • 38. Равномерное и равнопеременное движение точки
    1. Предмет статики. Основные понятия и определения

    Статика – раздел механики, в котором изучаются условия равновесия механических систем под действием приложенных к ним сил и моментов.

    Равновесие – такое механическое состояние тела, при котором оно находится в состоянии покоя или движется прямолинейно и равномерно относительно выбранной инерциальной системы отсчёта.

    Все тела в природе взаимодействуют между собой и с окружающей средой.

    Сила – векторная величина, характеризующаяся величиной (модулем силы), направлением и точкой приложения.

    Система тел – совокупность тел, каким-либо образом связанных между собой.

    Внутренние силы – силы, с которыми тела данной системы взаимодействуют друг с другом.

    Внешние силы – силы, с которыми тела, не входящие в систему, взаимодействуют с телами данной системы.

    Равнодействующая сила – это сила, равная эквивалентной системе сил по своему действию.

    Система сходящихся сил – это такая система сил, линии действия которой пересекаются в одной точке.

    Момент силы - векторная физическая величина, равная векторному произведению радиус-вектора, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.

    В механике, степени свободы - это совокупность независимых координат перемещения и/или вращения, полностью определяющая движение и/или положение тела или системы тел.

    Равновесие механической системы – состояние механической системы, находящейся под действием сил, при котором все её точки покоятся по отношению к рассматриваемой системе отсчёта.

    Системы сил, под действием каждой из которых твердое тело находится в одинаковом кинематическом состоянии, называется эквивалентными .

    Сила, равная по модулю равнодействующей и направленная по линии ее действия в противоположную сторону, называется уравновешивающей силой .

    Твердое тело называется свободным, если оно может перемещаться в пространстве в любом направлении.

    Твердое тело, свобода движения которого ограничена связями, называется несвободным .

    2.Аксиомы статики

    1) Не нарушая механического состояния тела, к нему можно приложить или отбросить уравновешенную систему сил.

    2) О действии и противодействии. При всяком действии одного тела на другое со стороны другого тела имеется противодействие, такое же по величине, но противоположное по направлению.

    3) О двух силах. Две силы, приложенные к одному и тому же телу, взаимно уравновешены (их действие эквивалентно нулю) тогда и только тогда, когда они равны по величине и действуют по одной прямой в противоположные стороны.

    4) О равнодействующей. Равнодействующая двух сил, приложенных к одной точке, приложена к той же точке и равна диагонали параллелограмма, построенного на этих силах как сторонах.

    5) Аксиома затвердевания. Если деформируемое телонаходилось в равновесии, то оно будет находиться в равновесии и после его затвердевания.

    6) Аксиома о связях. Механическое состояние системы не изменится, если освободить её от связей и приложить к точкам системы силы, равные действовавшим на них силам реакций связей.

    Классификация силовых систем : свободная, несвободная

    Классификация сил : активные и реакции связей либо внешние и внутренние

    3. Связи и их реакции. Аксиома связей. Основные виды связей.

    Тело называется свободным , если его перемещения в пространстве с течением времени ничем не ограничены.

    В любом другом случае тело является несвободным.

    Связи – ограничения, налагаемые на свободу любого несвободного тела.

    Силы, с которыми связи действуют на данное тело, называются реакциями связей .

    Аксиома связей :

    Всякое несвободное тело можно рассматривать как свободное, если отбросить связи и заменить их действие реакциями этих связей. Виды связей:

      Гладкая поверхность (опора без трения)

      Шероховатая поверхность

      Цилиндрический шарнир (подшипник)

      Сферический шарнир

      Гибкая нить

      Невесомый стержень

      Жесткая заделка (защемление)

      Опорные реакции балок

    5. Равнодействующая системы сходящихся сил. Геометрический и аналитический способы определения равнодействующей.

    Сходящимися называются силы, линии действия(л.д.) которых пересекаются в одной точке.

    Если у такой системы сил л.д. расположены в одной плоскости, то она называется плоской системой сходящихся сил. В любом другом случае система сходящихся сил пространственная.

    Равнодействующая сходящихся сил равна геометрической сумме этих сил и приложена в точке их пересечения
    . Равнодействующая может быть найдена геометрическим способом – построением силового (векторного) многоугольника или аналитическим способом, проектируя силы на оси координат.

    Геометрический способ:

    Теорема: любая система сходящихся сил приводится к равнодействующей, равной геометрической сумме составляющих сил и приложенных в точках пересечения линий их действия.

    Сложность данного подхода в сложности геометрических построений.

    Для упрощения построений сложим геометрически силы следующим образом: конец предыдущей силы должен совпадать с началом следующего, а линии действия сил должны быть параллельны заданным.

    Замыкающая, полученная таким образом, и будет являться вектором равнодействующей, причем он должен быть направлен то начала к концу.

    Аналитический способ:

    Проекцией силы на ось называется направленный отрезок, заключенный между перпендикулярами, проведенными к соответствующей оси из начала к концу вектора силы.

    В случае пространственной системы сил используется метод двойного проецирования: сначала сила проецируется на плоскость, а затем определяются проекции полученной проекции на осях координат.

    6. Условия равновесия системы сходящихся сил в геометрической и аналитической формах.