Что такое углекислота. Формула углекислого газа структурная химическая

Энциклопедичный YouTube

  • 1 / 5

    Оксид углерода(IV) не поддерживает горения . В нём горят только некоторые активные металлы: :

    2 M g + C O 2 → 2 M g O + C {\displaystyle {\mathsf {2Mg+CO_{2}\rightarrow 2MgO+C}}}

    Взаимодействие с оксидом активного металла:

    C a O + C O 2 → C a C O 3 {\displaystyle {\mathsf {CaO+CO_{2}\rightarrow CaCO_{3}}}}

    При растворении в воде образует угольную кислоту :

    C O 2 + H 2 O ⇄ H 2 C O 3 {\displaystyle {\mathsf {CO_{2}+H_{2}O\rightleftarrows H_{2}CO_{3}}}}

    Реагирует со щёлочами с образованием карбонатов и гидрокарбонатов:

    C a (O H) 2 + C O 2 → C a C O 3 ↓ + H 2 O {\displaystyle {\mathsf {Ca(OH)_{2}+CO_{2}\rightarrow CaCO_{3}\downarrow +H_{2}O}}} (качественная реакция на углекислый газ) K O H + C O 2 → K H C O 3 {\displaystyle {\mathsf {KOH+CO_{2}\rightarrow KHCO_{3}}}}

    Биологические

    Организм человека выделяет приблизительно 1 кг (2,3 фунта) углекислого газа в сутки .

    Этот углекислый газ переносится от тканей, где он образуется в качестве одного из конечных продуктов метаболизма, по венозной системе и затем выделяется с выдыхаемым воздухом через лёгкие. Таким образом, содержание углекислого газа в крови велико в венозной системе, и уменьшается в капиллярной сети лёгких, и мало в артериальной крови. Содержание углекислого газа в пробе крови часто выражают в терминах парциального давления, то есть давления, которое бы имел содержащийся в пробе крови в данном количестве углекислый газ, если бы весь объём пробы крови занимал только он .

    Углекислый газ (CO 2) транспортируется в крови тремя различными способами (точное соотношение каждого из этих трёх способов транспортировки зависит от того, является ли кровь артериальной или венозной).

    Гемоглобин, основной кислород-транспортирующий белок эритроцитов крови, способен транспортировать как кислород, так и углекислый газ. Однако углекислый газ связывается с гемоглобином в ином месте, чем кислород. Он связывается с N-терминальными концами цепей глобина , а не с гемом . Однако благодаря аллостерическим эффектам, которые приводят к изменению конфигурации молекулы гемоглобина при связывании, связывание углекислого газа понижает способность кислорода к связыванию с ним же, при данном парциальном давлении кислорода, и наоборот - связывание кислорода с гемоглобином понижает способность углекислого газа к связыванию с ним же, при данном парциальном давлении углекислого газа. Помимо этого, способность гемоглобина к преимущественному связыванию с кислородом или с углекислым газом зависит также и от pH среды. Эти особенности очень важны для успешного захвата и транспорта кислорода из лёгких в ткани и его успешного высвобождения в тканях, а также для успешного захвата и транспорта углекислого газа из тканей в лёгкие и его высвобождения там.

    Углекислый газ является одним из важнейших медиаторов ауторегуляции кровотока. Он является мощным вазодилататором . Соответственно, если уровень углекислого газа в ткани или в крови повышается (например, вследствие интенсивного метаболизма - вызванного, скажем, физической нагрузкой, воспалением, повреждением тканей, или вследствие затруднения кровотока, ишемии ткани), то капилляры расширяются, что приводит к увеличению кровотока и соответственно к увеличению доставки к тканям кислорода и транспорта из тканей накопившейся углекислоты. Кроме того, углекислый газ в определённых концентрациях (повышенных, но ещё не достигающих токсических значений) оказывает положительное инотропное и хронотропное действие на миокард и повышает его чувствительность к адреналину , что приводит к увеличению силы и частоты сердечных сокращений, величины сердечного выброса и, как следствие, ударного и минутного объёма крови. Это также способствует коррекции тканевой гипоксии и гиперкапнии (повышенного уровня углекислоты).

    Ионы гидрокарбоната очень важны для регуляции pH крови и поддержания нормального кислотно-щелочного равновесия. Частота дыхания влияет на содержание углекислого газа в крови. Слабое или замедленное дыхание вызывает респираторный ацидоз , в то время как учащённое и чрезмерно глубокое дыхание приводит к гипервентиляции и развитию респираторного алкалоза .

    Кроме того, углекислый газ также важен в регуляции дыхания. Хотя наш организм требует кислорода для обеспечения метаболизма, низкое содержание кислорода в крови или в тканях обычно не стимулирует дыхание (вернее, стимулирующее влияние нехватки кислорода на дыхание слишком слабо и «включается» поздно, при очень низких уровнях кислорода в крови, при которых человек нередко уже теряет сознание). В норме дыхание стимулируется повышением уровня углекислого газа в крови. Дыхательный центр гораздо более чувствителен к повышению уровня углекислого газа, чем к нехватке кислорода. Как следствие этого, дыхание сильно разрежённым воздухом (с низким парциальным давлением кислорода) или газовой смесью, вообще не содержащей кислорода (например, 100 % азотом или 100 % закисью азота) может быстро привести к потере сознания без возникновения ощущения нехватки воздуха (поскольку уровень углекислоты в крови не повышается, ибо ничто не препятствует её выдыханию). Это особенно опасно для пилотов военных самолётов, летающих на больших высотах (в случае аварийной разгерметизации кабины пилоты могут быстро потерять сознание). Эта особенность системы регуляции дыхания также является причиной того, почему в самолётах стюардессы инструктируют пассажиров в случае разгерметизации салона самолёта в первую очередь надевать кислородную маску самим, прежде чем пытаться помочь кому-либо ещё - делая это, помогающий рискует быстро потерять сознание сам, причём даже не ощущая до последнего момента какого-либо дискомфорта и потребности в кислороде .

    Дыхательный центр человека пытается поддерживать парциальное давление углекислого газа в артериальной крови не выше 40 мм ртутного столба. При сознательной гипервентиляции содержание углекислого газа в артериальной крови может снизиться до 10-20 мм ртутного столба, при этом содержание кислорода в крови практически не изменится или увеличится незначительно, а потребность сделать очередной вдох уменьшится как следствие уменьшения стимулирующего влияния углекислого газа на активность дыхательного центра. Это является причиной того, почему после некоторого периода сознательной гипервентиляции легче задержать дыхание надолго, чем без предшествующей гипервентиляции. Такая сознательная гипервентиляция с последующей задержкой дыхания может привести к потере сознания до того, как человек ощутит потребность сделать вдох. В безопасной обстановке такая потеря сознания ничем особенным не грозит (потеряв сознание, человек потеряет и контроль над собой, перестанет задерживать дыхание и сделает вдох, дыхание, а вместе с ним и снабжение мозга кислородом восстановится, а затем восстановится и сознание). Однако в других ситуациях, например, перед нырянием, это может быть опасным (потеря сознания и потребность сделать вдох наступят на глубине, и в отсутствие сознательного контроля в дыхательные пути попадёт вода, что может привести к утоплению). Именно поэтому гипервентиляция перед нырянием опасна и не рекомендуется.

    Получение

    В промышленных количествах углекислота выделяется из дымовых газов, или как побочный продукт химических процессов, например, при разложении природных карбонатов (известняк , доломит) или при производстве алкоголя (спиртовое брожение). Смесь полученных газов промывают раствором карбоната калия, которые поглощают углекислый газ, переходя в гидрокарбонат. Раствор гидрокарбоната при нагревании или при пониженном давлении разлагается, высвобождая углекислоту. В современных установках получения углекислого газа вместо гидрокарбоната чаще применяется водный раствор моноэтаноламина , который при определённых условиях способен абсорбировать СО₂, содержащийся в дымовом газе, а при нагреве отдавать его; таким образом отделяется готовый продукт от других веществ.

    Также углекислый газ получают на установках разделения воздуха как побочный продукт получения чистого кислорода, азота и аргона .

    В лабораторных условиях небольшие количества получают взаимодействием карбонатов и гидрокарбонатов с кислотами, например мрамора , мела или соды с соляной кислотой , используя, например, аппарат Киппа . Использование реакции серной кислоты с мелом или мрамором приводит к образованию малорастворимого сульфата кальция, который мешает реакции, и который удаляется значительным избытком кислоты.

    Для приготовления напитков может быть использована реакция пищевой соды с лимонной кислотой или с кислым лимонным соком. Именно в таком виде появились первые газированные напитки. Их изготовлением и продажей занимались аптекари.

    Применение

    В пищевой промышленности углекислота используется как консервант и разрыхлитель , обозначается на упаковке кодом Е290 .

    Жидкая углекислота широко применяется в системах пожаротушения и в огнетушителях . Автоматические углекислотные установки для пожаротушения различаются по системам пуска, которые бывают пневматическими, механическими или электрическими .

    Устройство для подачи углекислого газа в аквариум может включать в себя резервуар с газом. Простейший и наиболее распространенный метод получения углекислого газа основан на конструкции для изготовления алкогольного напитка браги . При брожении, выделяемый углекислый газ вполне может обеспечить подкормку аквариумных растений

    Углекислый газ используется для газирования лимонада и газированной воды . Углекислый газ используется также в качестве защитной среды при сварке проволокой, но при высоких температурах происходит его распад с выделением кислорода. Выделяющийся кислород окисляет металл . В связи с этим приходится в сварочную проволоку вводить раскислители, такие как марганец и кремний . Другим следствием влияния кислорода, также связанного с окислением, является резкое снижение поверхностного натяжения, что приводит, среди прочего, к более интенсивному разбрызгиванию металла, чем при сварке в инертной среде.

    Хранение углекислоты в стальном баллоне в сжиженном состоянии выгоднее, чем в виде газа. Углекислота имеет сравнительно низкую критическую температуру +31°С. В стандартный 40-литровый баллон заливают около 30 кг сжиженного углекислого газа, и при комнатной температуре в баллоне будет находиться жидкая фаза, а давление составит примерно 6 МПа (60 кгс/см²). Если температура будет выше +31°С, то углекислота перейдёт в сверхкритическое состояние с давлением выше 7,36 МПа. Стандартное рабочее давление для обычного 40-литрового баллона составляет 15 МПа (150 кгс/см²), однако он должен безопасно выдерживать давление в 1,5 раза выше, то есть 22,5 МПа,- таким образом, работа с подобными баллонами может считаться вполне безопасной.

    Твёрдая углекислота - «сухой лёд» - используется в качестве хладагента в лабораторных исследованиях, в розничной торговле, при ремонте оборудования (например: охлаждение одной из сопрягаемых деталей при посадке внатяг) и т. д. Для сжижения углекислого газа и получения сухого льда применяются углекислотные установки .

    Методы регистрации

    Измерение парциального давления углекислого газа требуется в технологических процессах, в медицинских применениях - анализ дыхательных смесей при искусственной вентиляции лёгких и в замкнутых системах жизнеобеспечения. Анализ концентрации CO 2 в атмосфере используется для экологических и научных исследований, для изучения парникового эффекта . Углекислый газ регистрируют с помощью газоанализаторов основанных на принципе инфракрасной спектроскопии и других газоизмерительных систем . Медицинский газоанализатор для регистрации содержания углекислоты в выдыхаемом воздухе называется капнограф . Для измерения низких концентраций CO 2 (а также ) в технологических газах или в атмосферном воздухе можно использовать газохроматографический метод с метанатором и регистрацией на пламенно-ионизационном детекторе .

    Углекислый газ в природе

    Ежегодные колебания концентрации атмосферной углекислоты на планете определяются, главным образом, растительностью средних (40-70°) широт Северного полушария.

    Большое количество углекислоты растворено в океане.

    Углекислый газ составляет значительную часть атмосфер некоторых планет Солнечной системы : Венеры , Марса .

    Токсичность

    Углекислый газ нетоксичен, но по воздействию его повышенных концентраций в воздухе на воздуходышащие живые организмы его относят к удушающим газам (англ.) русск. . Незначительные повышения концентрации до 2-4 % в помещениях приводят к развитию у людей сонливости и слабости. Опасными концентрациями считаются уровни около 7-10 %, при которых развивается удушье, проявляющее себя в головной боли, головокружении, расстройстве слуха и в потере сознания (симптомы, сходные с симптомами высотной болезни), в зависимости от концентрации, в течение времени от нескольких минут до одного часа. При вдыхании воздуха с высокими концентрациями газа смерть наступает очень быстро от удушья .

    Хотя, фактически, даже концентрация 5-7 % CO 2 не смертельна, уже при концентрации 0,1 % (такое содержание углекислого газа наблюдается в воздухе мегаполисов) люди начинают чувствовать слабость, сонливость. Это показывает, что даже при высоких содержаниях кислорода большая концентрация CO 2 сильно влияет на самочувствие.

    Вдыхание воздуха с повышенной концентрацией этого газа не приводит к долговременным расстройствам здоровья и после удаления пострадавшего из загазованной атмосферы быстро наступает полное восстановление здоровья .

    (IV), диоксид углерода или же двуокись углерода. Также его еще называют угольным ангидридом. Он является совершенно бесцветным газом, который не имеет запаха, с кисловатым вкусом. Углекислый газ тяжелее воздуха и плохо растворяется в воде. При температуре ниже - 78 градусов Цельсия кристаллизуется и становится похожим на снег.

    Из газообразного состояния это вещество переходит в твердое, поскольку не может существовать в жидком состоянии в условиях атмосферного давления. Плотность углекислого газа в нормальных условиях составляет 1,97 кг/м3 - в 1,5 раза выше Диоксид углерода в твердом виде называется «сухой лед». В жидкое состояние, в котором его можно хранить длительное время, он переходит при повышении давления. Рассмотрим подробнее данное вещество и его химическое строение.

    Углекислый газ, формула которого CO2, состоит из углерода и кислорода, а получается он в результате сжигания или гниения органических веществ. Оксид углерода содержится в воздухе и подземных минеральных источниках. Люди и животные тоже выделяют углекислый газ при выдыхании воздуха. Растения без освещения выделяют его, а во время фотосинтеза интенсивно поглощают. Благодаря процессу метаболизма клеток всех живых существ оксид углерода является одним из главных составляющих окружающей природы.

    Этот газ не токсичен, но если он скапливается в большой концентрации, может начаться удушье (гиперкапния), а при его недостатке развивается противоположное состояние - гипокапния. Диоксид углерода пропускает и отражает инфракрасные. Он является который непосредственно влияет на глобальное потепление. Это происходит из-за того, что уровень его содержания в атмосфере постоянно растет, что и приводит к парниковому эффекту.

    Диоксид углерода получают промышленным путем из дымных или печных газов, или же путем разложения карбонатов доломита и известняка. Смесь этих газов тщательно промывается специальным раствором, состоящим из карбоната калия. Далее она переходит в гидрокарбонат и при нагревании разлагается, в результате чего высвобождается углекислота. Углекислота (H2CO3) образуется из углекислого газа, растворенного в воде, но в современных условиях получают ее и другими, более прогрессивными методами. После того как углекислый газ очищен, его сжимают, охлаждают и закачивают в баллоны.

    В промышленности это вещество широко и повсеместно применяется. Пищевики используют его как разрыхлитель (например, для приготовления теста) или в качестве консерванта (Е290). С помощью углекислого газа производят различные тонизирующие напитки и газировки, которые так любимы не только детьми, но и взрослыми. Диоксид углерода используют при изготовлении пищевой соды, пива, сахара, шипучих вин.

    Углекислый газ применяется и при производстве эффективных огнетушителей. С помощью углекислого газа создается активная среда, необходимая при При высокой температуре сварочной дуги углекислый газ распадается на кислород и угарный газ. Кислород взаимодействует с жидким металлом и окисляет его. Углекислота в баллончиках применяется в пневматических ружьях и пистолетах.

    Авиамоделисты используют это вещество в качестве топлива для своих моделей. С помощью углекислого газа можно значительно повысить урожайность культур, выращиваемых в оранжерее. Также в промышленности широко используется в котором продукты питания сохраняются значительно лучше. Его применяют в качестве хладагента в холодильниках, морозильных камерах, электрических генераторах и других теплоэнергетических установках.

    Все мы еще со школьной скамьи знаем, что углекислый газ выбрасывается в атмосферу как продукт жизнедеятельности человека и животного, то есть, он является тем, что мы выдыхаем. В достаточно небольших количествах он усваиваться растениями и преобразуется на кислород. Одной из причин глобального потепления является тот же углекислый газ или другими словами двуокись углерода.

    Но не все так плохо как кажется на первый взгляд, ведь человечество научилось использовать его в обширной зоне своей деятельности в благих целях. Так, например, углекислый газ используется в газированных водах, или в пищевой промышленности его можно встретить на этикетке под кодом Е290 в качестве консерванта. Достаточно часто диоксид углерода выполняет роль разрыхлителя в мучных изделиях, куда он попадает при приготовлении теста. Чаще всего углекислый газ хранят в жидком состоянии в специальных баллонах, которые используются неоднократно и поддаются заправке. Подробно об этом можно узнать на сайте https://wice24.ru/product/uglekislota-co2 . Его можно встретить, как в газообразном состоянии, так и в виде сухого льда, но хранение в сжиженном состоянии намного выгоднее.

    Биохимики доказали, что удобрение воздуха углеродным газом - очень хорошее средство для получения больших урожаев от разных культур. Эта теория уже давно нашла своё практическое применение. Так в Голландии цветоводы эффективно используют углекислый газ для удобрения различных цветов (герберы, тюльпаны, розы) в тепличных условиях. И если раньше необходимый климат создавался методом сжигания природного газа (такая технология была признана не эффективной и вредной для окружающей среды), то сегодня углеродный газ попадает к растениям по специальным трубочкам с отверстиями и используется в необходимом количестве в основном в зимнее время.

    Широкое распространение диоксид углерода нашёл и в пожарной сфере в качестве заправки огнетушителя. Углекислый газ в баллончиках нашел свое применение в пневматическом оружии, а в авиамоделировании он служит источником энергии для двигателей.

    В твердом состоянии CO2 имеет как уже упоминалось название сухого льда, и в пищевой промышленности используется для хранения продуктов. Стоит отметить, что по сравнению с обычным льдом, сухой лед имеет ряд преимуществ, среди которых высокая холодопроизводительность (в 2 раза выше обычного), и при его испарении не остается побочных продуктов.

    И это далеко не все области где эффективно и целесообразно используется углекислый газ.

    Ключевые слова: Где применяется углекислый газ, Использование углекислого газа, промышленность, в быту, заправка баллонов, хранение углекислого газа, Е290

    Диоксид углерода представляет собой в нормальных условиях газ без цвета, не обладающий ароматическими характеристиками, но имеющий немного кислый вкус. В условиях атмосферного давления соединение существует не в жидком состоянии, а переходит из твердого в газообразное. Диоксид углерода носит название сухого льда в твердой фазе. Другими наименованиями вещества являются двуокись углерода, углекислый газ, оксид углерода, угольный ангидрид.

    Соединение содержится в минеральных источниках, воздухе, выделяется во время дыхания растений и животных. В живой природе вещество играет важную роль, принимая участие в обменных процессах живых клеток. Диоксид углерода получается путем окислительных реакций у млекопитающих, выделяется с дыханием в атмосферу. Основным источником углерода для растений служит атмосферный углекислый газ.

    Углекислый газ в промышленных масштабах образуется из дымовых газов путем его абсорбирования моноэтаноламином или карбонатом калия. Помимо этого, соединение получают на особых установках по разделению воздуха, в качестве побочного продукта при добыче аргона, кислорода, азота.

    Области применения диоксида углерода

    Благодаря своим свойствам диоксид углерода стал применяться в пищевой промышленности еще в 19 столетии. Один из пивоваров обнаружил скопление газа под крышкой пивной бочки. Он решил его испробовать, в связи с этим обогатил воду и пиво данным химическим соединением. После новые напитки были поданы гостям, которым пришлась по вкусу газированная вода. Вот так берет начало использование углекислого газа в производстве напитков. Впоследствии были основательно изучены химические свойства и состав соединения.

    Диоксид углерода, известный как пищевая добавка под номером Е290, применяется как разрыхлитель для теста, во время выпечки кондитерских изделий. Активно используется углекислый газ во время производства безалкогольных напитков. Его добавление оказывает положительный эффект на освежающие качества и свойства напитков. В виноделии процесс брожения контролируется с помощью добавления диоксида углерода. Некоторые из вин специально обогащают данным соединением. Для лучшего хранения соков также используется углекислый газ в небольшой концентрации. Кроме этого, вещество применяется как защитный газ при транспортировке и хранении пищевых продуктов.

    Благодаря своим свойствам диоксид углерода применяется в баллонах огнетушителей, во время сварки проволокой, в пневматическом оружии, в качестве источника энергии для двигателей в авиамоделях. В твердом виде соединение применяется с целью сохранения холода в морозильных камерах.

    Добавка под номером Е290 разрешена практически во всех странах для использования в производстве пищевых продуктов.

    Влияние диоксида углерода на человеческий организм

    Диоксид углерода имеется в составе многих живых клеток организма и атмосферы. В связи с этим добавку Е290 можно отнести к относительно безвредным.

    Но помните, что углекислый газ способствует активизации всасывания в слизистую желудка разнообразных веществ. Именно этим объясняется быстрое опьянение в результате потребления алкогольных газированных напитков.

    Вред диоксида углерода проявляется такими побочными эффектами, как вздутие живота и отрыжка при употреблении газированных напитков. Есть и еще одно мнение касательно данной пищевой добавки, которое заключается в следующем: вред диоксида углерода состоит в том, что сильногазированные напитки способны вымывать кальций из костей.

    Популярные статьи Читать больше статей

    02.12.2013

    Все мы много ходим в течение дня. Даже если у нас малоподвижный образ жизни, мы все равно ходим – ведь у нас н...

    606248 65 Подробнее

    10.10.2013

    Пятьдесят лет для представительниц прекрасного пола – это своеобразный рубеж, перешагнув который каждая вторая...

    445654 117 Подробнее

    02.12.2013

    В наше время бег уже не вызывает массу восторженных отзывов, как это было лет тридцать назад. Тогда общество б...

    355181 41 Подробнее

    Применение углекислоты (двуокиси углерода)

    В настоящее время углекислота во всех своих состояниях широко используется во всех отраслях промышленности и агропромышленного комплекса.

    В газообразном состоянии (углекислый газ)

    В пищевой промышленности

    1. Для создания инертной бактериостатичной и фунгистатичной атмосферы (при концентрации свыше 20%):
    · при переработке растительных и животных продуктов;
    · при упаковке пищевых продуктов и медицинских препаратов для значительного увеличения срока их хранения;
    · при разливе пива, вина и соков как вытесняющий газ.
    2. В производстве безалкогольных напитков и минеральных вод (сатурация).
    3. В пивоварении и производстве шампанского и шипучих вин (карбонизация).
    4. Приготовление газированных воды и напитков сифонами и сатураторами, для персонала горячих цехов и в летнее время.
    5. Использование в торговых автоматах при продаже газ.воды в розлив и при ручной торговле пивом и квасом, газированными водой и напитками.
    6. При изготовлении газированных молочных напитков и газированных фруктово-ягодных соков («игристые продукты»).
    7. В производстве сахара (дефекация - сатурация).
    8. Для длительной консервации фруктовых и овощных соков с сохранением запаха и вкуса свежевыжатого продукта путём насыщения СО2 и хранения под высоким давлением.
    9. Для интенсификации процессов осаждения и удаления солей винной кислоты из вин и соков (детартация).
    10. Для приготовления питьевой опреснённой воды фильтрационным методом. Для насыщения бессолевой питьевой воды ионами кальция и магния.

    В производстве, хранении и переработке сельскохозяйственной продукции

    11. Для увеличения срока хранения пищевых продуктов, овощей и фруктов в регулируемой атмосфере (в 2-5 раз).
    12. Хранение срезанных цветов 20 и более дней в атмосфере углекислого газа.
    13. Хранение круп, макарон, зерна, сухофруктов и других продуктов питания в атмосфере углекислого газа, для предохранения их от повреждения насекомыми и грызунами.
    14. Для обработки плодов и ягод перед закладкой на хранение, что препятствует развитию грибковых и бактериальных гнилей.
    15. Для насыщения под высоким давлением нарезанных или целиковых овощей, что усиливает вкусовые оттенки («игристые продукты») и улучшает их сохраняемость.
    16. Для улучшения роста и повышения урожайности растений в защищённом грунте.
    На сегодняшний день в овощеводческих и цветоводческих хозяйствах России остро стоит вопрос об осуществлении подкормок углекислым газом растений в защищённом грунте. Дефицит СО2 является более серьёзной проблемой, чем дефицит элементов минерального питания. В среднем, растение синтезирует из воды и углекислого газа 94% массы сухого вещества, остальные 6% растение получает из минеральных удобрений! Низкое содержание углекислого газа сейчас является фактором, ограничивающим урожайность (в первую очередь при малообъёмной культуре). В воздухе теплицы площадью 1 га содержится около 20 кг СО2. При максимальных же уровнях освещения в весенние и летние месяцы потребление СО2 растениями огурца в процессе фотосинтеза может приближаться к 50 кг·ч/га (т.е. до 700 кг/га СО2 за световой день). Образующийся дефицит лишь частично покрывается за счёт притока атмосферного воздуха через фрамуги и неплотности ограждающих конструкций, а также за счёт ночного дыхания растений. В грунтовых теплицах дополнительным источником углекислого газа является грунт, заправленный навозом, торфом, соломой или опилками. Эффект обогащения воздуха теплицы углекислым газом зависит от количества и вида этих органических веществ, подвергающихся микробиологическому разложению. Например, при внесении опилок, смоченными минеральными удобрениями, уровень углекислого газа в первое время может достигать высоких значений ночью, и днём при закрытых фрамугах. Однако в целом этот эффект недостаточно велик и удовлетворяет лишь часть потребности растений. Основным недостатком биологических источников является кратковременность повышения концентрации углекислого газа до желаемого уровня, а также невозможность регулирования процесса подкормки. Нередко в грунтовых теплицах в солнечные дни при недостаточном воздухообмене содержание СО2 в результате интенсивного поглощения растениями может упасть ниже 0,01% и фотосинтез практически прекращается! Недостаток СО2 становится основным из факторов, ограничивающих ассимиляцию углеводов и соответственно рост и развитие растений. Полностью покрыть дефицит возможно только за счёт использования технических источников углекислого газа.
    17. Производство микроводорослей для скота. При насыщении воды углекислотой в установках автономного выращивания водорослей, значительно (в 4-6 раз) возрастает скорость водорослей.
    18. Для повышения качества силоса. При силосовании сочных кормов искусственное введение в растительную массу СО2 предотвращает проникновение кислорода из воздуха, что способствует образованию высококачественного продукта, с благоприятным соотношением органических кислот повышенным содержанием каротина и переваримого протеина.
    19. Для безопасной дезинсекции продовольственных и непродовольственных продуктов. Атмосфера, содержащая более 60% углекислого газа в течении 1-10 дней (в зависимости от температуры) уничтожает не только взрослых насекомых, но их личинки и яйца. Настоящая технология применима к продуктам с содержанием связанной воды до 20%, как то зерно, рис, грибы, сухофрукты, орехи и какао, комбикорма и многое другое.
    20. Для тотального уничтожения мышевидных грызунов путём кратковременного заполнения газом нор, хранилищ, камер (достаточная концентрация 30% углекислого газа).
    21. Для анаэробной пастеризации кормов для животных, в смеси с водяным паром при температуре, не превышающей 83 град.С - как замена гранулированию и экструдированию, не требующая больших энергетических затрат.
    22. Для усыпления птицы и некрупных животных (свиньи, телята, овцы) перед забоем. Для анестезии рыбы при перевозке.
    23. Для наркотизации пчелиных и шмелиных маток в целях ускорения начала яйцекладки.
    24. Для насыщения питьевой воды для кур, что значительно снижает отрицательное воздействие повышенных летних температур на птицу, способствует утолщению скорлупы яиц и укреплению костяка.
    25. Для насыщения рабочих растворов фунгицидов и гербицидов для лучшего действия препаратов. Этот способ позволяет уменьшить расход раствора на 20-30%.

    В медицине

    26. а) в смеси с кислородом как стимулятор дыхания (в концентрации 5%);
    б) для сухих газированных ванн (в концентрации 15-30%) в целях снижения артериального давления и улучшения кровотока.
    27. Криотерапия в дерматологии, сухие и водяные углекислотные ванны в бальнеолечении, дыхательные смеси в хирургии.

    В химической и бумажной промышленности

    28. Для производства соды, углеаммонийных солей (применяются в качестве удобрений в растениеводстве, добавок в корм жвачным животным, вместо дрожжей в хлебопечении и в мучных кондитерских изделиях), свинцовых белил, мочевины, оксикарбоновых кислот. Для каталитического синтеза метанола и формальдегида.
    29. Для нейтрализации щелочных сточных вод. Благодаря эффекту самобуферизации раствора, точное регулирование pH позволяет избежать коррозии оборудования и сточных труб, нет образования ядовитых побочных продуктов.
    30. В производстве бумаги для обработки пульпы после щелочного беления (повышает на 15% эффективности процесса).
    31. Для увеличения выхода и улучшения физико-механических свойств и белимости целлюлозы при кислородно-содовой варке древесины.
    32. Для очистки теплообменников от накипи и предотвращения её образования (комбинация гидродинамического и химического способов).

    В строительной и прочих отраслях промышленности

    33. Для быстрого химического отвердения пресс-форм для стального и чугунного литья. Подача углекислоты в литейные формы в 20-25 раз ускоряет их твердение по сравнению с тепловой сушкой.
    34. Как вспенивающий газ при производстве пористых пластиков.
    35. Для упрочнения огнеупорного кирпича.
    36. Для сварочных полуавтоматов при ремонте кузовов пассажирских и легковых автомобилей, ремонте кабин грузовых автомобилей и тракторов и при эл.сварке изделий из тонколистовых сталей.
    37. При изготовлении сварных конструкций с автоматической и полуавтоматической электросваркой в среде углекислоты как защитного газа. По сравнению со сваркой штучным электродом возрастает удобство работы, производительность повышается в 2-4 раза, стоимость 1 кг наплавленного металла в среде СО2 в два с лишним раза ниже по сравнению с ручной дуговой сваркой.
    38. В качестве защитной среды в смесях с инертными и благородными газами при автоматизированной сварке и резке металла, благодаря которой получаются швы очень высокого качества.
    39. Зарядка и перезарядка огнетушителей, для противопожарного оборудования. В системах пожаротушения, для заполнения огнетушителей.
    40. Зарядка баллончиков для газобаллонного оружия и сифонов.
    41. Как газ-распылитель в аэрозольных баллончиках.
    42. Для заполнения спортивного инвентаря (мячей, шаров и т.п.).
    43. В качестве активной среды в медицинских и промышленных лазерах.
    44. Для точной калибровки приборов.

    В горно-добывающей промышленности

    45. Для разупрочнения углепородного массива при добыче каменного угля в удароопасных пластах.
    46. Для проведения взрывных работ без образования пламени.
    47. Повышение эффективности нефтедобычи при добавлении углекислоты в нефтяные пласты.

    В жидком состоянии (низкотемпературная углекислота)

    В пищевой промышленности

    1. Для быстрого замораживания, до температуры -18 град.С и ниже, пищевых продуктов в контактных скороморозильных аппаратах. Наряду с жидким азотом жидкий диоксид углерода наиболее подходит для прямого контактного замораживания различных видов продуктов. Как контактный хладагент, он привлекателен дешевизной, химической пассивностью и термической стабильностью, не коррозирует металлических узлов, не горюч, не опасен для персонала. На движущийся на ленте транспортёра продукт из сопел подаётся определёнными порциями жидкая углекислота, которая при атмосферном давлении мгновенно превращается в смесь сухого снега и холодного углекислого газа, при этом вентиляторы постоянно перемешивают газовую смесь внутри аппарата, которая в принципе способна охладить продукт от +20 град.С до -78,5 град.С за несколько минут. Использование контактных скороморозильных аппаратов имеет ряд принципиальных преимуществ по сравнению с традиционной технологией заморозки:
    · время заморозки сокращается до 5-30 минут; быстро прекращается ферментативная активность в продукте;
    · хорошо сохраняется структура тканей и клетки продукта, поскольку кристаллы льда формируются значительно меньших размеров и практически одновременно в клетках и в межклеточном пространстве тканей;
    · при медленной заморозке в продукте появляются следы жизнедеятельности бактерий, в то время как при шоковой заморозке они просто не успевают развиться;
    · потери массы продукта в результате усушки составляют всего 0,3-1% (против 3-6%);
    · легко улетучивающиеся ценные ароматические вещества сохранятся в значительно больших количествах. По сравнению с замораживанием жидким азотом, при замораживании диоксидом углерода:
    · не наблюдается растрескивание продукта из-за слишком большого перепада температуры между поверхностью и сердцевиной замораживаемого продукта
    · в процессе замораживания СО2 проникает в продукт и во время размораживания защищает его от окисления и развития микроорганизмов. Плоды и овощи, подвергнутые быстрой заморозке и фасовке на месте, наиболее полно сохраняют вкусовые достоинства и питательную ценность, все витамины и биологически активные вещества, что дает возможность широко применять их для производства продуктов для детского и диетического питания. Немаловажно, что для приготовления дорогостоящих замороженных смесей может быть успешно использована нестандартная плодоовощная продукция. Скороморозильные аппараты на жидкой углекислоте компактны, просты по устройству и недороги в эксплуатации (при наличии рядом источника дешёвой жидкой углекислоты). Аппараты существуют в мобильном и стационарном варианте, спирального, тоннельного и шкафного типа, чем представляют интерес для сельскохозяйственных производителей и переработчиков продукции. Особенно они удобны, когда производство требует замораживания различных пищевых продуктов и сырья при различных температурных режимах (-10…-70 град.С). Быстрозамороженные продукты можно подвергнуть сушке в условиях глубокого вакуума - сублимационной сушке. Продукты, высушенные этим способом, отличаются высоким качеством: сохраняют все питательные вещества, обладают повышенной восстанавливающей способностью, имеют незначительную усадку и пористое строение, сохраняют естественный цвет. Сублимированные продукты в 10 раз легче исходных за счет удаления из них воды, они очень долго сохраняются в герметичных пакетах (особенно при заполнении пакетов углекислым газом) и могут дёшево доставляться в самые отдаленные районы.
    2. Для быстрого охлаждения свежих пищевых продуктов в упакованном и неупакованном виде до +2…+6 град.С. При помощи установок, работа которых похожа на работу скороморозильных аппаратов: при инжекции жидкой углекислоты образуется мельчайший сухой снег, которым продукт обрабатывается определённое время. Сухой снег - эффективное средство быстрого снижения температуры, не приводящее к высыханию продукта, как воздушное охлаждение, и не повышающее его влагосодержание, как это происходит при охлаждении водяным льдом. Охлаждение сухим снегом обеспечивает необходимое снижение температуры всего за несколько минут, а не часов, как при обычном охлаждении. Сохраняется и даже улучшается естественный цвет продукта вследствие небольшой диффузии СО2 внутрь. Одновременно значительно увеличивается срок хранения продуктов, так как СО2 подавляет развитие как аэробных, так анаэробных бактерий и плесневых грибов. Охлаждению удобно и выгодно подвергать мясо птицы (разделанное или в тушках), порционное мясо, колбасы и полуфабрикаты. Установки также применяются там, где по технологии требуется быстро охладить продукт во время или перед формовкой, прессованием, экструдированием, измельчением или нарезанием. Аппараты подобного типа также очень удобны для применения на птицефабриках поточного сверхбыстрого охлаждения с 42,7 град.С до 4,4-7,2 град.С свежеснесённых куриных яиц.
    3. Для снятия кожицы с ягод методом подморозки.
    4. Для криоконсервации спермы и эмбрионов крупного рогатого скота и свиней.

    В холодильной промышленности

    5. Для использования в качестве альтернативного хладагента в холодильных установках. Диоксид углерода может служить эффективным хладагентом, поскольку имеет низкую критическую температуру (31,1 град.С), сравнительно высокую температуру тройной точки (-56 град.С), большое давление в тройной точке (0,5 мПа) и высокое критическое давление (7,39 мПа). Как хладагент обладает следующими преимуществами:
    · очень низкая цена по сравнению с другими хладагентами;
    · нетоксичен, не горюч и не взрывоопасен;
    · совместим со всеми электроизоляционными и конструкционными материалами;
    · не разрушает озоновый слой;
    · вносит умеренный вклад в увеличение парникового эффекта по сравнению с современными галоидопроизводными хладагентами. Высокое критическое давление имеет положительный аспект, связанный с низкой степенью сжатия, вследствие чего эффективность компрессора становится значительной, что позволяет применять компактные и мало затратные конструктивные решения для холодильных установок. Вместе с этим требуется дополнительное охлаждение электромотора конденсатора, увеличивается металлоёмкость холодильной установки из-за увеличения толщины труб и стенок. Перспективно применения СО2 в низкотемпературных двухкаскадных установках промышленного и полупромышленного применения, и особенно в системах кондиционирования воздуха автомобилей и поездов.
    6. Для высокопроизводительного измельчения в замороженном виде мягких, термопластичных и упругих продуктов и веществ. В криогенных мельницах быстро и с малым расходом электроэнергии подвергаются размолу в замороженном виде те продукты и вещества, которые не удаётся измельчить в обычном виде, например желатин, каучук и резина, любые полимеры, шины. Холодный размол в сухой инертной атмосфере необходим для всех пряностей и специй, какао-бобов и кофейных зёрен.
    7. Для испытания технических систем при низких температурах.

    В металлургии

    8. Для охлаждения труднообрабатываемых сплавов при обработке на токарных станках.
    9. Для образования защитной среды для подавления дыма в процессах выплавки или разлива меди, никеля, цинка и свинца.
    10. При отжиге твердой медной проволоки для кабельной продукции.

    В добывающей промышленности

    11. Как слабобризантное взрывчатое вещество при добыче каменного угля, не приводящее при взрыве к воспламенению метана и угольной пыли, и не дающее ядовитых газов.
    12. Профилактика возгорания и взрывов вытеснением углекислотой воздуха из емкостей и шахт с взрывоопасными парами и газами.

    В сверхкритическом состоянии

    В процессах экстракции

    1. Улавливание ароматических веществ из фруктово-ягодных соков, получение экстрактов растений и лекарственных трав с помощью жидкой углекислоты. В традиционных методах экстракции растительного и животного сырья применяются различного рода органические растворители, которые узко специфичны и редко обеспечивают извлечение из сырья полного комплекса биологически активных соединений. Более того, при этом всегда возникает проблема отделения от экстракта остатков растворителя, причем технологические параметры этого процесса могут привести к частичному или даже полному разрушению некоторых компонентов экстракта, что обуславливает изменение не только состава, но свойств выделенного экстракта. По сравнению с традиционными методами, процессы экстракции (а также фракционирования и импрегнации) с использованием диоксида углерода в сверхкритическом состоянии имеет целый ряд преимуществ:
    · энергосберегающий характер процесса;
    · высокая массообменная характеристика процесса благодаря низкой вязкости и высокой проникающей способности растворителя;
    · высокая степень извлечения соответствующих компонентов и высокое качество получаемого продукта;
    · практическое отсутствие СО2 в готовой продукции;
    · используется инертная растворяющая среда при температурном режиме, не грозящем термической деградацией материалов;
    · процесс не дает сточных вод и отработанных растворителей, после декомпрессии СО2 может быть собран и повторно использован;
    · обеспечивается уникальная микробиологическая чистота получаемой продукции;
    · отсутствие сложного оборудования и многостадийного процесса;
    · используется дешёвый, нетоксичный и негорючий растворитель. Селективные и экстракционные свойства диоксида углерода могут меняться в широких пределах при изменении температуры и давления, что обуславливают возможность извлечения при низкой температуре из растительного сырья большей части спектра известных на сегодняшний день биологически активных соединений.
    2. Для получения ценных натуральных продуктов - СО2-экстрактов пряновкусовых веществ, эфирных масел и биологически активных веществ. Экстракт практически копирует исходное растительное сырье, что же касается концентрации входящих в него веществ, то можно заявить об отсутствии аналогов среди классических экстрактов. Данные хроматографического анализа показывают, что содержание ценных веществ превосходит классические экстракты в десятки раз. Освоено получение в промышленных масштабах:
    · экстрактов из пряностей и лекарственных трав;
    · фруктовых ароматов;
    · экстрактов и -кислот из хмеля;
    · антиоксидантов, каротиноидов и ликопенов (в том числе из томатного сырья);
    · натуральных красящих веществ (из плодов красного перца и других);
    · ланолина из шерсти;
    · натуральных растительных восков;
    · масла из облепихи.
    3. Для выделения высокоочищенных эфирных масел, в частности из цитрусовых. При экстракции сверхкритическим СО2 эфирных масел успешно экстрагируются и легколетучие фракции, которые придают этим маслам фиксирующие свойства, а также более полный аромат.
    4. Для удаления кофеина из чая и кофе, никотина из табака.
    5. Для удаления холестерина из продуктов питания (мясо, молочные продукты и яйца).
    6. Для изготовления обезжиренных картофельных чипсов и соевых продуктов;
    7. Для производства высококачественного табака с заданными технологическими свойствами.
    8. Для химической чистки одежды.
    9. Для удаления соединений урана и трансурановых элементов из радиоактивно заражённых почв и с поверхностей металлических тел. При этом в сотни раз сокращаются объёмы водных отходов, и нет необходимости в использовании агрессивных органических растворителей.
    10. Для экологически чистой технологии травления печатных плат для микроэлектроники, без образования ядовитых жидких отходов.

    В процессах фракционирования

    Выделение жидкого вещества из раствора, либо разделение смеси жидких веществ носит название фракционирования. Эти процессы являются непрерывными и поэтому значительно более эффективны, чем выделение веществ из твёрдых субстратов.
    11. Для рафинации и дезодорации масел и жиров. Для получения товарного масла необходимо провести целый комплекс мероприятий, таких как удаление лецитина, слизи, кислоты, произвести отбеливание, дезодорацию и прочие. При экстракции сверхкритическим СО2 эти процессы осуществляются в течение одного технологического цикла, причем качество получаемого в этом случае масла значительно лучше, поскольку процесс протекает при относительно низких температурах.
    12. Для уменьшения содержания алкоголя в напитках. Изготовление безалкогольных традиционных напитков (вино, пиво, сидр) имеет увеличивающийся спрос по этическим, религиозным или диетическим соображениям. Даже если эти напитки с низким содержанием алкоголя зачастую имеют более низкое качество, их рынок значителен и быстро растет, так что улучшение подобной технологии представляет собой очень привлекательный вопрос.
    13. Для энергосберегающего получения глицерина высокой чистоты.
    14. Для энергосберегающего получения лецетина из соевого масла (с содержанием фосфатидил холина порядка 95%).
    15. Для проточной очистки промышленных сточных вод от углеводородных загрязнителей.

    В процессах импрегнации

    Процесс импрегнации - внедрение новых веществ, в сущности, является обратным процессом экстракции. Нужное вещество растворяется в суперкритическом СО2, затем раствор проникает в твердый субстрат, при сбросе давления углекислый газ моментально улетучивается, а вещество остаётся в субстрате.
    16. Для экологически чистой технологии крашения волокон, тканей и текстильных аксессуаров. Окрашивание является частным случаем применения импрегнации. Красители обычно растворены в токсичном органическом растворителе, поэтому окрашенные материалы приходится тщательно промывать, в результате чего растворитель либо испаряются в атмосферу, либо оказываются в сточных водах. При сверхкритическом окрашивании вода и растворители не используется, краситель растворён в сверхкритическом СО2. Этот метод дает интересную возможность окрашивать различные типы синтетических материалов одновременно, например, пластиковые зубцы и тканевую подкладку застежки-молнии.
    17. Для экологически чистой технологии нанесение красок. Сухой краситель растворяется в потоке сверхкритического СО2, и вместе с ним вылетает из сопла специального пистолета. Углекислый газ сразу же улетучивается, а краска оседает на поверхности. Эта технология особенно перспективна для окраски автомобилей и крупногабаритной техники.
    18. Для гомогенизированного пропитывания полимерных структур лекарственными препаратами, обеспечивая тем самым постоянное и длительное высвобождение лекарства в организме. Эта технология основана на способности сверхкритического СО2 легко проникать во многие полимеры, насыщать их, вызывая раскрытие в нём микропор и набухание.

    В технологических процессах

    19. Замена высокотемпературного водяного пара сверхкритическим СО2 в процессах экструзии, при переработке зерноподобного сырья, позволяет использовать относительно низкие температуры, вводить в рецептуру молочные ингредиенты и любые термочувствительные добавки. Сверхкритическая флюидная экструзия позволяет создавать новые продукты с ультрапористой внутренней структурой и гладкой плотной поверхностью.
    20. Для получения порошков полимеров и жиров. Струя сверхкритического СО2 с растворёнными в нём некоторыми полимерами или жирами инжектируются в камеру с более низким давлением, где они «конденсируются» в виде совершенно однородного мелко дисперсного порошка, тончайших волокон или плёнок.
    21. Для подготовки к сушке зелени и плодов путём удаления кутикулярного воскового слоя струёй сверхкритического СО2.

    В процессах проведения химических реакций

    22. Перспективным направлением применения сверхкритического СО2 является использование его в качестве инертной среды в ходе химических реакций полимеризации и синтеза. В сверхкритической среде синтез может проходить в тысячу раз быстрее по сравнению с синтезом тех же веществ в традиционных реакторах. Для промышленности очень важно, что столь значительное ускорение скорости реакций, обусловленное высокими концентрациями реагентов в сверхкритической среде с её низкой вязкостью и высокой диффузионной способностью, позволяет соответственно сократить время контакта реагентов. В технологическом плане это дает возможность заменить статические замкнутые реакторы проточными, принципиально меньшего размера, более дешёвыми и безопасными.

    В тепловых процессах

    23. В качестве рабочего тела для современных энергетических установок.
    24. В качестве рабочего тела газовых тепловых насосов, производящих высокотемпературное тепло для систем горячего водоснабжения.

    В твёрдом состоянии (сухой лёд и снег)

    В пищевой промышленности

    1. Для контактного замораживания мяса и рыбы.
    2. Для контактного быстрого замораживания ягод (красной и чёрной смородины, крыжовника, малины, черноплодной рябины и других).
    3. Реализация мороженого и прохладительных напитков в местах удаленных от электросети, с охлаждением сухим льдом.
    4. При хранении, транспортировке и реализации замороженных и охлаждённых пищевых продуктов. Развивается производство брикетированного и гранулированного сухого льда для покупателей и продавцов скоропортящихся продуктов. Сухой лёд очень удобен для транспортировки и при реализации в жаркую погоду мяса, рыбы, мороженого - продукты остаются замороженными весьма продолжительное время. Поскольку сухой лёд только испаряется (сублимируется), растаявшей жидкости не бывает, и транспортные ёмкости остаются всегда чистыми. Авторефрежираторы могут оборудоваться малогабаритной сухолёдной системой охлаждения, которая характеризуются предельной простотой устройства и высокой надёжностью в работе; её стоимость во много раз ниже стоимости любой классической холодильной установки. При перевозках на короткие расстояния подобная система охлаждения является наиболее экономичной.
    5. Для предварительного охлаждения контейнеров перед загрузкой продукции. Обдувание струей сухого снега в холодном углекислом газе является одним из самых эффективных способов предварительного охлаждения любых контейнеров.
    6. При авиационных перевозках в качестве первичного хладагента в изотермических контейнерах с автономной двухступенчатой холодильной системой (гранулированный сухой лёд - фреон).

    При работах по очистке поверхностей

    8. Очистка деталей и узлов, двигателей от загрязнений очистными установками с применением гранул сухого льда в газовом потоке.Для очистки поверхностей узлов и деталей от эксплуатационных загрязнений. В последнее время возник большой спрос на безабразивную экспресс-очистку материалов, сухих и влажных поверхностей струей мелко гранулированного сухого льда (бластинг). Без разбора агрегатов можно успешно осуществлять:
    · очистку линий сварки;
    · удаление старой краски;
    · очистку литейных форм;
    · очистку узлов типографских машин;
    · очистку оборудования для пищевой промышленности;
    · очистку форм для производства пенополиуретановых изделий.
    · очистку пресс-форм для производства автомобильных шин и других резинотехнических изделий;
    · очистку форм для производства пластмассовых изделий, в том числе очистку форм для производства ПЭТ бутылок; Когда гранулы сухого льда ударяются о поверхность, они мгновенно испаряются, создавая микровзрыв, который снимает загрязнение с поверхности. При удалении хрупкого материала, такого как краска, процесс создает волну давления между покрытием и основой. Эта волна достаточно сильная для того, чтобы снять покрытие, приподняв его изнутри. При удалении тягучих или вязких материалов, таких как масло или грязь, процесс очистки подобен смыву сильной струей воды.
    7. Для очистки от заусенцев штампованных изделий из резины и пластика (галтовка).

    При строительных работах

    9. В процессе изготовления пористых строительных материалов с одинаковым размером пузырьков углекислого газа, равномерно распределённых по всему объёму материала.
    10. Для замораживания грунтов при строительстве.
    11. Установка ледяных пробок в трубах с водой (методом их замораживания снаружи сухим льдом), на время проведения ремонтных работ на трубопроводах без слива воды.
    12. Для очистки артезианских колодцев.
    13. При снятии асфальтовых покрытий в жаркую погоду.

    В прочих отраслях промышленности

    14. Получение низких температур до минус 100 градусов (при смешивании сухого льда с эфиром) для испытания качества продукции, для лабораторных работ.
    15. Для холодной посадки деталей в машиностроении.
    16. При изготовлении пластичных сортов легированных и нержавеющих сталей, отожжённых алюминиевых сплавов.
    17. При дроблении, помоле и консервации карбида кальция.
    18. Для создания искусственного дождя и получения дополнительных осадков.
    19. Искусственное рассеивание облаков и тумана, борьба с градобитием.
    20. Для образования безвредного дыма при проведении спектаклей и концертов. Получение дым-эффекта, на сценах эстрады при выступлениях артистов, с помощью сухого льда.

    В медицине

    21. Для лечения некоторых кожных заболеваний (криотерапия).