Строение и функции ДНК. Механизмы редупликации ДНК. Биологическое значение. Генетический код, ее структурная организация и свойства. Строение и уровни организации днк Дезоксирибонуклеиновая кислота. Общие сведения

Г Е Н Е Т И К А

Генетика – наука, которая изучает закономерности наследственности и изменчивости.

Наследственность свойство всех живых организмов передавать особенности своего строения и развития потомкам.

Изменчивость свойство всех живых организмов изменять наследственную информацию, полученную от родителей, а также процесс ее реализации в ходе индивидуального развития (онтогенеза). Изменчивость – это свойство, противоположное наследственности.

Эти два понятия тесно связаны друг с другом.

Термин «генетика» впервые был предложен в 1906 году английским ученым У. Бэтсоном, однако история развития этой науки своими корнями уходит в далекое прошлое.

Всю историю развития генетики можно условно разделить на четыре этапа:

    Существование умозрительных гипотез о природе наследственности.

    Открытие основных законов наследственности.

    Изучение наследственности на клеточном уровне.

    Изучение наследственности на молекулярном уровне.

Структурно-функциональные уровни организации наследственного материала

В наследственной структуре клетки и организма в целом выделяют три уровня организации генетического материала: генный, хромосомный и геномный.

Генный уровень

Наименьшей (элементарной) единицей наследственного материала является ген.

Ген – это часть молекулы ДНК, имеющая определенную последовательность нуклеотидов и представляющая собой единицу функционирования наследственного материала.

Ген несет информацию о конкретном признаке или свойстве организма.

У человека имеется около 30 тысяч генов.

Изменение в структуре гена ведет к изменению соответствующего признака. Следовательно, на генном уровне обеспечиваются индивидуальное наследование и индивидуальная изменчивость признаков.

Хромосомный уровень

Все гены в клетке объединены в группы и располагаются в хромосомах в линейном порядке. Каждая хромосома уникальна по набору входящих в нее генов. В состав хромосом входят ДНК, белки (гистоновые и негистоновые), РНК, полисахариды, липиды и ионы металлов.

Хромосомный уровень в эукариотических клетках обеспечивает характер функционирования отдельных генов, тип их наследования и регуляцию их активности. Он позволяет закономерно воспроизводить и передавать наследственную информацию в процессе деления клетки.

Геномный уровень

Геном совокупность всех генов, находящихся в гаплоидном наборе хромосом. При оплодотворении два генома родительских гамет сливаются и образуют генотип.

Генотип совокупность всех генов, заключенных в диплоидном наборе хромосом, или кариотипе. Кариотип – полный набор хромосом, характеризующийся у каждого вида их строго определенным числом и строением.

Геномный уровень отличается высокой стабильностью. Он обеспечивает сложную систему взаимодействия генов. Результатом взаимодействия генов друг с другом и с факторами внешней среды является фенотип.

Молекулярные основы наследственности

Ген как элементарная единица наследственной информации выполняет определенные функции и обладает определенными свойствами.

Функции генов:

    хранение наследственной информации;

    управление биосинтезом белка и других веществ в клетке;

    контроль за развитием и старением клетки.

Свойства генов:

    дискретность: один ген контролирует один признак;

    специфичность: каждый ген отвечает строго за свой признак;

    стабильность структуры: гены передаются из поколения в поколение не изменяясь;

    дозированность действия: один ген определяет одну дозу фенотипического проявления признака;

    способность к мутированию (изменению структуры);

    способность к репликации (самоудвоению);

    способность к рекомбинации (переходу из одной гомологичной хромосомы в другую).

Функциональная классификация генов

Все гены делятся на три группы:

    cтруктурные – контролируют развитие признаков путем синтеза соответствующих ферментов;

    регуляторные – управляют деятельностью структурных генов;

    модуляторные – смещают процесс проявления признаков в сторону его усиления или ослабления, вплоть до полной блокировки.

Особенности строения генов

у прокариотических и эукариотических клеток

Клетки в природе делятся на прокариотические и эукариотические. У прокариот ген имеет непрерывную структуру, т.е. представляет собой часть молекулы ДНК.

У эукариот ген состоит из чередующихся участков: экзонов и интронов . Экзон – информативный участок, интрон – неинформативный. Число интронов у разных генов неодинаково (от 1 до 50).

Экспрессия (проявление действия) гена в процессе синтеза белка

Весь процесс синтеза белка условно делится на три этапа: транскрипция,

процессинг и трансляция.

    Транскрипция

Транскрипция процесс переписывания информации с молекулы ДНК на и-РНК. Протекает в ядре.

Молекула ДНК состоит из двух спирально закрученных нитей. Каждая нить представлена последовательностью нуклеотидов, а каждый нуклеотид состоит из углевода (пентозы), азотистого основания и остатка фосфорной кислоты.

Каждая нить молекулы ДНК имеет два конца – гидроксильный (3) и фосфатный (5). Нити расположены по отношению друг к другу антипараллельно.

Синтез и-РНК в клетке всегда идет от фосфатного конца к гидроксильному. Поэтому матрицей для транскрипции служит одна нить ДНК, обращенная к синтезирующему ферменту своим гидроксильным концом; она называется кодогенной, илиинформативной (а другая нить, соответственно, некодогенной, или неинформативной).

Транскрипция делится на три периода:

    инициация,

    элонгация,

    терминация.

Поведение: эволюционный подход Курчанов Николай Анатольевич

1.2. Организация генетического материала

Структурно-функциональная организация генетического аппарата определяет деление всех живых организмов на прокариот и эукариот. У прокариот (к которым относятся бактерии и археи) ДНК представлена кольцевой молекулой и находится в цитоплазме клетки. У эукариот (к которым относятся все остальные организмы) структурными носителями генетической информации ДНК являются хромосомы, находящиеся в ядре.

Хромосомы представляют собой сложную многоуровневую структуру, в которой ДНК взаимодействует с различными белками. Базовым уровнем этой структуры являются нуклеосомы, представляющие собой глобулы из восьми молекул белков гистонов, обвитых ДНК. Нуклеогистоновая нить в дальнейшем многократно укладывается, формируя компактные хромосомы. Такая структура открывает широкие возможности для регуляции.

Поскольку число генов в организме несоизмеримо больше числа хромосом, то понятно, что каждая хромосома несет много генов. Каждый ген занимает в хромосоме определенное место – локус. Гены, расположенные на одной хромосоме, называются сцепленными.

Помимо ядра, небольшая доля генетической информации эукариотической клетки находится в таких органоидах, как митохондрии и хлоропласты, имеющих собственные генетические системы: свои ДНК, разнообразные РНК (и-РНК, т-РНК, р-РНК) и рибосомы, что позволяет осуществлять независимый синтез белка. Кольцевые ДНК этих органоидов явились важным доводом в пользу их бактериального симбиотического происхождения на заре формирования жизни.

Клеточное ядро эукариот разделяет процессы транскрипции и трансляции, что предоставляет широкие возможности для регуляции. Регуляция происходит на всех этапах экспрессии генов эукариот. Дополнительным этапом у них является процессинг – процесс сложных преобразований синтезированной в ходе транскрипции РНК. Важнейшая составляющая процессинга и-РНК – сплайсинг, при котором происходит вырезание интронов (некодирующих областей гена) и сшивание экзонов (кодирующих областей). Экзоны и интроны обусловливают «мозаичную» структуру эукариотических генов. Именно в результате процессинга синтезированная в ядре РНК становится функционально активной.

Понимание многообразных механизмов регуляции послужило причиной радикальных изменений наших представлений о структурно-функциональной организации генетического аппарата в настоящее время.

Одним из основателей современной генетики, выдающимся датским ученым В. Иоганнсеном (1857–1927) были предложены базовые генетические термины – ген, аллель, генотип, фенотип, определяющие генетические характеристики особи.

Гены, расположенные в своих локусах, могут иметь варианты – аллели. Локус, имеющий в популяции более одного аллеля, называется полиморфным. Обычно аллели обозначаются буквами латинского или греческого алфавита, а если их много, то с верхним индексом. Количество аллелей разных генов в популяциях организмов может быть различным. Одни гены имеют много аллелей, другие – мало. В любом случае число аллелей ограничено эволюционными факторами: аллели, ухудшающие адаптивные свойства вида либо несовместимые с жизнью, элиминируются естественным отбором.

Конкретный организм эукариот имеет только два аллеля одного гена: по числу гомологичных локусов гомологичных хромосом (отцовской и материнской). Организм, у которого оба аллеля одинаковые, называется гомозиготой (по данному гену). Организм, у которого аллели разные, называется гетерозиготой (рис. 1.4). Аллели, локализованные на половых хромосомах гетерогаметного пола, могут присутствовать в единственном числе.

Генотип можно представить как совокупность аллелей организма, а фенотип – как совокупность его внешних признаков.

Введенный в 1920 г. немецким ботаником Г. Винклером (1877–1945) термин геном стал характеристикой целого вида организмов, а не конкретной особи. Это понятие в дальнейшем стало одним из важнейших. К 1980-м гг. XX в. формируется новое направление генетики – геномика. Первоначально геном характеризовали как совокупность генных локусов гаплоидного набора. Однако оказалось, что сами гены занимают относительно небольшую часть генома, хотя и составляют его основу. Большую часть занимают межгенные участки, где есть области с регуляторной функцией, а также районы невыясненного пока назначения. Регуляторные участки неразрывно связаны с генами, являются своего рода «инструкциями», определяющими работу генов на разных этапах развития организма. Поэтому геномом в настоящее время называют всю совокупность ДНК клетки, характерную для ДНК вида.

На современном этапе развития генетики геномика становится одним из ее ключевых разделов. Успехи геномики наглядно продемонстрировало успешное завершение программы «Геном человека».

Рис. 1.4 . Аллели сцепленных генов двух гомологичных хромосом

Из книги Микробиология: конспект лекций автора Ткаченко Ксения Викторовна

1. Организация наследственного материала бактерий Наследственный аппарат бактерий представлен одной хромосомой, которая представляет собой молекулу ДНК, она спирализована и свернута в кольцо. Это кольцо в одной точке прикреплено к цитоплазматической мембране. На

Из книги Кризис аграрной цивилизации и генетически модифицированные организмы автора Глазко Валерий Иванович

Подходы к выявлению чужеродного генетического материала в пищевой продукции Требование по маркировке продуктов, содержащих ГМ сою или кукурузу, «кроме случаев, когда отсутствуют генетически модифицированные белки или ДНК...» (Положение ЕС 1139/98) привело к развитию

Из книги КЛЕЙМО СОЗДАТЕЛЯ. Гипотеза происхождения жизни на Земле. автора Филатов Феликс Петрович

Часть вторая? Машина генетического кодирования

Из книги Основы психофизиологии автора Александров Юрий

Глава 11. Механика генетического кодирования (XI) Об этом можно прочитать в любом учебнике. И все же - чтобы облегчить понимание последующих рассуждений - позволим себе очень коротко остановиться на работе машины кодирования. Барбьери связывает формирование таких машин с

Из книги Фенетика [Эволюция, популяция, признак] автора Яблоков Алексей Владимирович

Часть третья? Арифметика генетического кодирования

Из книги Клеймо создателя автора Филатов Феликс Петрович

Глава А. Аналоговые таблицы генетического кода (XIII) Первым, кто попытался упорядочить таблицу генетического кода и построить ее на рациональной основе, был наш выдающийся ученый Юрий Борисович Румер. Он был физиком, учеником Макса Борна, хорошо знал Альберта Эйнштейна,

Из книги автора

Глава Б. Барионная оцифровка генетического кода (XIV) ФОРМАТЫ 1D и 2D Строго говоря, барионным числом называется сохраняемое квантовое число системы. Нам нет необходимости углубляться в эту тему. Может быть, стоит помнить лишь то, что барион - это элементарная частица,

Из книги автора

8.6. Значение материала патологии для изучения системной организации поведения Таким образом, проекция индивидуального опыта на структуры мозга изменяется в филогенезе, определяется историей обучения в процессе индивидуального развития и модифицируется при

Из книги автора

Мутационный процесс - первый поставщик эволюционного материала Элементарные эволюционные факторы выделяют на основе характера и природы их воздействия на популяции, а также по результатам оказываемого ими давления на популяции. При этом необходимым и достаточным

Из книги автора

Колебания численности - второй поставщик материала для эволюции Один из важнейших эволюционных факторов - периодические изменения численности особей, популяционные волны. В данном случае речь идет о колебаниях в положительную и отрицательную сторону, сменяющих друг

Из книги автора

Изучение динамики генетического состава популяции В начале этой книги подчеркивалось, что одна из важнейших задач современного популяционного исследования - получение материалов по самым разнообразным эволюционным ситуациям в природных популяциях, в частности,

Из книги автора

Глава A. Аналоговые таблицы генетического кода (XIII) Первым, кто попытался упорядочить таблицу генетического кода и построить ее на рациональной основе, был наш выдающийся ученый Юрий Борисович Румер. Он был физиком, учеником Макса Борна, хорошо знал Альберта Эйнштейна,

Из книги автора

Глава Б. Барионная оцифровка генетического кода (xiv)

Молекулярной основой наследственности у всех прокариот и эукариот является особый класс биоорганических веществ - нуклеиновые кислоты, подразделяющиеся по своему химическому составу и биологической роли на дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК).

Оба типа нуклеиновых кислот представляют собой нитевидные молекулы, состоящие из отдельных структурных единиц - нуклеотидов, соединенных в многозвеньевую полинуклеотидную цепь. Каждый нуклеотид состоит из следующих трех химически различных частей: I) остатков 5-углеродного сахара-дезоксирибозы (в ДНК) и рибозы (в РНК), образующих «остов» полинуклеотидной нити; 2) четырех азотистых оснований аденина (А), гуанина (G), цитозина (С) и тимина (Т) (в молекуле РНК последнее основание заменено на урацил U), причем каждое азотистое основание ковален-тно соединено с первым атомом углерода сахара посредством гликозидной связи; 3) фосфатной группы, соединяющей соседние нуклеотиды в единую цепь посредством формирования фосфодиэфирных связей между 5"-атомом углерода одного сахара и 3-атомом углерода другого.

Запись генетической информации осуществляется линейно от 5"-конца к 3"-концу молекулы нуклеиновой кислоты. В состав одной такой молекулы может входить до многих миллионов нуклеотидов.

В клетке молекулы ДНК существуют в виде спирализованной двойной цепи (двойной спирали), нити которой антипараллельны, т.е. имеют противоположную ориентацию. Двойная цепь ДНК образуется благодаря слабым водородным связям между комплементарными основаниями: аденин строго комплементарен тимину, а цитозин - гуанину.

При определенных условиях указанные водородные связи могут разрываться, приводя к появлению од-ноцепочечных молекул {денатурация ДНК), а в дальнейшем образовываться вновь между теми же комплементарными участками (ренатурация, или гибридизация ДНК). В процессе гибридизации происходит точное восстановление исходной двойной спирали ДНК. Именно наличие комплементарности обеспечивает как точность самовоспроизводства ДНК в каждом цикле клеточного деления (этот процесс носит название репликация), так и восстановление нарушепного нуклеотидного состава молекулы ДНК. В связи с комплементарностью нуклеотидов в составе двойной спирали длину молекулы ДНК принято выражать в парах оснований (и.о.), а также тысячах пар оснований (килобазы, кб) и миллионах пар оснований (мегабазы, мб). В состав ДНК человека как биологического вида входит около 3 миллиардов п.о.

Направленный синтез молекулы ДНК в клетке осуществляется особым ферментом - ДНК-полимеразой. Этот процесс предполагает «расплетение» двойной спирали на участке синтеза и образование особой белково-нуклеиновой структуры - репликационной вилки; постепенное продвижение репликационной вилки вдоль двойной спирали сопровождается последовательным присоединением к вновь образуемой цепи оснований, комплементарных однонитевой ДНК-матрице (синтез растущей цепи ДНК всегда протекает строго в направлении от 5" к 3").

Комплементарный синтез ДНК требует присутствия в среде отдельных «кирпичиков» для удлинения растущей молекулы - четырех видов молекул дезоксирибонуклеотид-трифосфатов (dATP, dTTP, dCTP и dGTP). Весь процесс инициируется особыми затравками - праймерами, представляющими собой короткие олигонуклеотидные молекулы, комплементарные определенному стартовому участку ДНК-матрицы.

На основании приведенных выше определений наследственности и изменчивости можно предположить, каким требованиям должен отвечать материальный субстрат этих двух свойств жизни.

Во-первых, генетический материал должен обладать способностью к самовоспроизведению, чтобы в. процессе размножения передавать наследственную информацию, на основе которой будет осуществляться формирование нового поколения. Во-вторых, для обеспечения устойчивости характеристик в ряду поколений наследственный материал должен сохранять постоянной свою организацию. В-третьих, материал наследственности и изменчивости должен обладать способностью приобретать изменения и воспроизводить их, обеспечивая возможность исторического развития живой материи в меняющихся условиях. Только в случае соответствия указанным требованиям материальный субстрат наследственности и изменчивости может обеспечить длительность и непрерывность существования живой природы и ее эволюцию.

Современные представления о природе генетического аппарата позволяют выделить три уровня его организации: генный, хромосомный и геномный. На каждом из них проявляются основные свойства материала наследственности и изменчивости и определенные закономерности его передачи и функционирования.

^

3.4. ГЕННЫЙ УРОВЕНЬ ОРГАНИЗАЦИИ ГЕНЕТИЧЕСКОГО АППАРАТА

Элементарной функциональной единицей генетического аппарата, определяющей возможность развития отдельного признака клетки или организма данного вида, является ген (наследственный задаток, по Г. Менделю). Передачей генов в ряду поколений клеток или организмов достигается материальная преемственность - наследование потомками признаков родителей.

Под признаком понимают единицу морфологической, физиологической, биохимической, иммунологической, клинической и любой другой дискретности организмов (клеток), т.е. отдельное качество или свойство, по которому они отличаются друг от друга.

Большинство перечисленных выше особенностей организмов или клеток относится к категории сложных признаков, формирование которых требует синтеза многих веществ, в первую очередь белков со специфическими свойствами - ферментов, иммунопротеинов, структурных, сократительных, транспортных и других белков. Свойства белковой молекулы определяются аминокислотной последовательностью ее полипептидной цепи, которая прямо задается последовательностью нуклеотидов в ДНК соответствующего гена и является элементарным, или простым, признаком.

Основные свойства гена как функциональной единицы генетического аппарата определяются его химической организацией,

^

3.4.1. Химическая организация гена

Исследования, направленные на выяснение химической природы наследственного материала, неопровержимо доказали, что материальным субстратом наследственности и изменчивости являются нуклеиновые кислоты, которые были обнаружены Ф. Мишером (1868) в ядрах клеток гноя. Нуклеиновые кислоты являются макромолекулами, т.е. отличаются большой молекулярной массой. Это полимеры, состоящие из мономеров - нуклеотидов, включающих три компонента: сахар (пентозу), фосфат и азотистое основание (пурин или пиримидин). К первому атому углерода в молекуле пентозы С-1" присоединяется азотистое основание (аденин, гуанин, цитозин, тимин или урацил), а к пятому атому углерода С-5" с помощью эфирной связи - фосфат; у третьего атома углерода С-3" всегда имеется гидроксильная группа - ОН (рис. 3.1).

Соединение нуклеотидов в макромолекулу нуклеиновой кислоты происходит путем взаимодействия фосфата одного нуклеотида с гидроксилом другого так, что между ними устанавливается фосфодиэфирная связь (рис. 3.2). В результате образуется полинуклеотидная цепь. Остов цепи состоит из чередующихся молекул фосфата и сахара. К молекулам пентозы в положении С-1" присоединено одно из перечисленных выше азотистых оснований (рис. 3.3).

Рис. 3.1. Схема строения нуклеотида

Объяснение см. в тексте; обозначения компонентов нуклеотида, использованные в этом рисунке, сохраняются во всех последующих схемах нуклеиновых кислот

Сборка полинуклеотидной цепи осуществляется при участии фермента полимеразы, который обеспечивает присоединение фосфатной группы следующего нуклеотида к гидроксильной группе, стоящей в положении 3", предыдущего нуклеотида (рис. 3.3). Благодаря отмеченной специфике действия названного фермента наращивание полинуклеотидной цепи происходит только на одном конце: там, где находится свободный гидроксил в положении 3". Начало цепи всегда несет фосфатную группу в положении 5". Это позволяет выделить в ней 5" и 3 "-концы.

Среди нуклеиновых кислот различают два вида соединений: дезоксирибонуклеиновую (ДНК ) и рибонуклеиновую (РНК ) кислоты. Изучение состава основных носителей наследственного материала - хромосом - обнаружило, что их наиболее химически устойчивым компонентом является ДНК, которая представляет собой субстрат наследственности и изменчивости.

^

3.4.1.1. Структура ДНК. Модель Дж. Уотсона и Ф. Крика

ДНК состоит из нуклеотидов, в состав которых входят сахар - дезоксирибоза, фосфат и одно из азотистых оснований - пурин (аденин или гуанин) либо пиримидин (тимин или цитозин).

Особенностью структурной организации ДНК является то, что ее молекулы включают две полинуклеотидные цепи, связанные между собой определенным образом. В соответствии с трехмерной моделью ДНК, предложенной в 1953 г. американским биофизиком Дж. Уотсоном и английским биофизиком и генетиком Ф. Криком, эти цепи соединяются друг с другом водородными связями между их азотистыми основаниями по принципу комплементарности. Аденин одной цепи соединяется двумя водородными связями с тимином другой цепи, а между гуанином и цитозином разных цепей образуются три водородные связи. Такое соединение азотистых оснований обеспечивает прочную связь двух цепей и сохранение равного расстояния между ними на всем протяжении.

Рис. 3.4. Схема строения молекулы ДНК

Стрелками обозначена антилараллельность целей

Другой важной особенностью объединения двух полинуклеотидных цепей в молекуле ДНК является их антипараллельность: 5"-конец одной цепи соединяется с 3"-концом другой, и наоборот (рис. 3.4).

Данные рентгеноструктурного анализа показали, что молекула ДНК, состоящая из двух цепей, образует спираль, закрученную вокруг собственной оси. Диаметр спирали составляет 2 нм, длина шага - 3, 4 нм. В каждый виток входит 10 пар нуклеотидов.

Чаще всего двойные спирали являются правозакрученными - при движении вверх вдоль оси спирали цепи поворачиваются вправо. Большинство молекул ДНК в растворе находится в правозакрученной - В-форме (В-ДНК). Однако встречаются также левозакрученные формы (Z-ДНК). Какое количество этой ДНК присутствует в клетках и каково ее биологическое значение, пока не установлено (рис. 3.5).

Рис. 3.5. Пространственные модели левоэакрученной Z-формы (I )

И правозакрученной В-формы (II ) ДНК

Таким образом, в структурной организации молекулы ДНК можно выделить первичную структуру - полинуклеотидную цепь, вторичную структуру - две комплементарные друг другу и антипараллельные полинуклеотидные цепи, соединенные водородными связями, и третичную структуру - трехмерную спираль с приведенными выше пространственными характеристиками.

^

3.4.1.2. Способ записи генетической информации в молекуле ДНК. Биологический код и его свойства

Первично все многообразие жизни обусловливается разнообразием белковых молекул, выполняющих в клетках различные биологические функции. Структура белков определяется набором и порядком расположения аминокислот в их пептидных цепях. Именно эта последовательность аминокислот в пептидах зашифрована в молекулах ДНК с помощью биологического (генетического ) кода. Относительная примитивность структуры ДНК, представляющей чередование всего лишь четырех различных нуклеотидов, долгое время мешала исследователям рассматривать это соединение как материальный субстрат наследственности и изменчивости, в котором должна быть зашифрована чрезвычайно разнообразная информация.

В 1954 г. Г. Гамовым было высказано предположение, что кодирование информации в молекулах ДНК должно осуществляться сочетаниями нескольких нуклеотидов. В многообразии белков, существующих в природе, было обнаружено около 20 различных аминокислот. Для шифровки такого их числа достаточное количество сочетаний нуклеотидов может обеспечить лишь триплетный код, в котором каждая аминокислота шифруется тремя стоящими рядом нуклеотидами. В этом случае из четырех нуклеотидов образуется 4 3 = 64 триплета. Код, состоящий из двух нуклеотидов, дал бы возможность зашифровать только 4 2 = 16 различных аминокислот.

Полная расшифовка генетического кода проведена в 60-х гг. нашего столетия. Из 64 возможных триплетов ДНК 61 кодирует различные аминокислоты; оставшиеся 3 получили название бессмысленных, или «нонсенс-триплетов». Они не шифруют аминокислот и выполняют функцию знаков препинания при считывании наследственной информации. К ним относятся АТТ, АЦТ, АТЦ.

Обращает на себя внимание явная избыточность кода, проявляющаяся в том, что многие аминокислоты шифруются несколькими триплетами (рис. 3.6). Это свойство триплетного кода, названное вырожденностью, имеет очень важное значение, так как возникновение в структуре молекулы ДНК изменений по типу замены одного нукле-отида в полинуклеотидной цепи может не изменить смысла триплета. Возникшее таким образом новое сочетание из трех нуклеотидов кодирует ту же самую аминокислоту.

В процессе изучения свойств генетического кода была обнаружена его специфичность. Каждый триплет способен кодировать только одну определенную аминокислоту. Интересным фактом является полное соответствие кода у различных видов живых организмов. Такая универсальность генетического кода свидетельствует о единстве происхождения всего многообразия живых форм на Земле в процессе биологической эволюции.

Незначительные отличия генетического кода обнаружены в ДНК митохондрий некоторых видов. Это не противоречит в целом положению об универсальности кода, но свидетельствует в пользу определенной дивергентности в его эволюции на ранних этапах существования жизни. Расшифровка кода в ДНК митохондрий различных видов показала, что во всех случаях в митохондриальных ДНК отмечается общая особенность: триплет АЦТ читается как АЦЦ, и поэтому из нонсенс-триплета превращается в шифр аминокислоты триптофана.

Рис. 3.6. Аминокислоты и кодирующиеих триплеты ДНК

Другие особенности являются специфичными для различных видов организмов. У дрожжей триплет ГАТ и, возможно, все семейство ГА кодирует вместо аминокислоты лейцина треонин. У млекопитающих триплет ТАГ имеет то же значение, что и ТАЦ, и кодирует аминокислоту метионин вместо изолейцина. Триплеты ТЦГ и ТЦЦ в ДНК митохондрий некоторых видов не кодируют аминокислот, являясь нонсенс-триплетами.

Наряду с триплетностью, вырожденностью, специфичностью и универсальностью важнейшими характеристиками генетического кода являются его непрерывность и неперекрываемость кодонов при считывании. Это означает, что последовательность нуклеотидов считывается триплет за триплетом без пропусков, при этом соседние триплеты не перекрывают друг друга, т.е. каждый отдельный нуклеотид входит в состав только одного триплета при заданной рамке считывания (рис. 3.7). Доказательством неперекрываемости генетического кода является замена только одной аминокислоты в пептиде при замене одного нуклеотида в ДНК. В случае включения нуклеотида в несколько перекрывающихся триплетов его замена влекла бы за собой замену 2-3 аминокислот в пептидной цепи.

Рис. 3.7. Непрерывность и непререкаемость генетического кода

При считывании наследственной информации

Цифрами обозначены нуклеотиды

Свойства ДНК и РНК. Понятие гена и генокода. Генетика


1. Что такое биология



. Свойства ДНК


ДНК (дезоксирибонуклеиновая кислота), нуклеиновая кислота, которая является основным компонентом хромосом эукариотовых клеток и некоторых вирусов. ДНК часто называют «строительным материалом» жизни, поскольку в ней хранится генетический код, являющийся основой наследственности. Молекулярную структуру ДНК впервые установили Джеймс Уотсон и Френсис Крик в 1953 г. Она состоит из двойной спирали, сложенной двумя длинными лентами чередующихся молекул сахара (дезоксирибозы) и фосфатных групп, связанных азотистыми основаниями. В целом молекула имеет форму, напоминающую скрученную веревочную лестницу, перекладинами которой служат азотистые основания - адеин (А), цитозин (С), гуанин (G) и тимин (Т). Основания соединяются попарно всегда в одном и том же порядке: аденин с тимином, гуанин с цитозином. Правильность этого соединения обеспечивает точность самовоспроизведения.

При воспроизведении ленты ДНК разделяются, и каждая создает образец для синтеза новой ленты РНК (информационной РНК). Этот процесс матрицирования, протекающий при посредстве энзимов, приводит к возникновению копии, тождественной исходной спирали. Количество ДНК всегда постоянно для всех клеток данного вида растения или животного. В процессе воспроизведения количество ДНК удваивается, когда образуются реплики хромосом перед началом митоза; в гаметах, яйцеклетках и спермотозоидах (гаплоидных клетках) это количество вдвое меньше, чем в других клетках тела. Комбинация основания с соответствующими молекулами фосфата и сахара называется нуклеотидом, а вся цепочка в целом называется полинуклеотидной.

Генетический код хранится в виде последовательности нуклеотидов: каждая аминокислота кодируется тремя нуклеотидами, а ряд кислот представляет собою ген.

При помощи методики, называемой идентификацией по ДНК, можно очень точно определить личность человека. Эта методика позволяет представить ДНК визуально. Рисунок каждой ДНК уникален (подобен отпечаткам пальцев), у каждого человека он свой, за исключением близнецов. В случаях, когда имеются сомнения относительно отцовства, при помощи идентификации ДНК его можно установить точно.

ДНК присутствует во всех клетках, поэтому в качестве исходного материала можно брать кровь, частицы кожи и даже капли пота ДНК выделяется из образца, а затем добавляется энзим, разделяющий ее Энзим воздействует на участки между генами. Затем гены сортируются по размеру в электрическом поле.

Строение ДНК определяет ее роль как хранилища информации о клетках. Ее молекулу часто называют двойной спиралью, поскольку в ее основе лежат два «каркаса», изогнутых по спирали, состоящие из сахарных и фосфатных групп.

Связь между двумя половинками спирали осуществляют так называемые основания, расположенные подобно пере-кпадинам лестницы - аденин, тимин, гуанин и цитозин. Эти перекладины составлены из пары оснований, по одному от каждой половинки каркаса, причем пары складываются по строгому правилу: аденин всегда с тимином, а цитозин - с гуанином. Поэтому последовательность оснований на одной из половин каркаса является точным зеркальным отражением, или дополнением, к последовательности на другой половине.

Связи между парами оснований относительно слабы, что позволяет молекуле ДНК «расстегиваться» перед началом репликации или матрицирования. При рассмотрении под микроскопом хромосома делящейся клетки имеет простую крестообразную форму, которая скрывает подлинную сложность «упаковки» ДНК внутри нее. Если увеличить маленький отрезок хромосомы, можно увидеть плотно свернутую спиралью полоску хроматина - ДНК, тесно связанной с белком. При дальнейшем увеличении сегмента хроматина становится видно, что он представляет собою туго закрученную спираль нуклеосом - напоминающих бусины элементов, состоящих из белковой сердцевины, окруженной молекулой ДНК. Белковая сердцевина имеет положительный заряд и благодаря этому связывается с отрицательно заряженной молекулой ДНК. имеющей структуру двойной спирали. Для строения клетки важно то, что ДНК можно таким образом сжимать. Иначе она занимала бы намного больше места. Сохранение ДНК в виде компактных связок облегчает ее функционирование внутри клетки: отдельные участки разворачиваются по мере того, как возникает необходимость в генах, содержащихся на них.


. Свойства РНК


РНК - тип нуклеиновых кислот; содержатся во всех живых клетках и участвуют в двух этапах реализации генетической информации: транскрипции (синтезе РНК на ДНК) и трансляции (синтезе белков на рибосомах). Молекулы РНК, как правило, представляют собой одноцепочечные незамкнутые полинуклеотиды, построенные из мономеров - нуклеотидов (в данном случае - рибонуклеотидов). В отдельных местах цепи нуклеотиды спариваются по принципу комплементарности и образуются участки двойной спирали. Число рибонуклеотидов в молекуле может быть от нескольких десятков до десяти тысяч. В отличие от дезоксирибонуклеотидов ДНК, содержащих углевод дезоксирибозу, рибонуклеотиды содержат углевод рибозу, а вместо азотистого основания тимина - урацил. Остальные азотистые основания (аденин, гуанин и цитозин) те же, что в ДНК. Различные классы РНК выполняют в клетках разные функции, но все они синтезируются на матрице ДНК.

Рибосомальные РНК (р-РНК), составляющие основную массу всех клеточных РНК (80-90%), соединяясь с белками, формируют рибосомы , органоиды, осуществляющие синтез белков. В клетках эукариот р-РНК синтезируются в ядрышках.

Транспортные РНК (т-РНК) с помощью специального фермента связываются с аминокислотами и доставляют их на рибосомы. При этом определённые аминокислоты, как правило, переносятся определёнными («своими») т-РНК. Однако в ряде случаев одну аминокислоту могут кодировать несколько разных кодонов (вырожденностьгенетического кода ). Соответственно, каждую из таких аминокислот могут переносить две или более т-РНК.

Информационные, или матричные, РНК (и-РНК, м-РНК) составляют в клетке ок. 2% от общего количества РНК. В клетках эукариот и-РНК синтезируются в ядрах на матрицах ДНК, затем переходят в цитоплазму и связываются с рибосомами. Здесь они, в свою очередь, служат матрицами для синтеза белка на рибосомах: к и-РНК присоединяются т-РНК, несущие аминокислоты. Таким образом, и-РНК преобразуют информацию, заключённую в последовательности нуклеотидов ДНК, в последовательность аминокислот синтезируемого белка, т.е. генетическая информация реализуется в уникальной структуре белка, которая определяет его специфичность и функции. У некоторых вирусов РНК (одноцепочечная или двухцепочечная) выполняет роль хромосомы. Такие вирусы называются РНК-содержащими.

Некоторые РНК, подобно ферментам, обладают каталитической активностью. В последние годы был открыт новый класс РНК - т.н. малые РНК. Эти РНК, по-видимому, выполняют в клетках роль универсальных регуляторов, включая и выключая гены при эмбриональном развитии и контролируя внутриклеточные процессы. Полагают, что в процессе биохимической (добиологической) эволюции на Земле первоначально появились молекулы РНК, возможно даже их способные к самовоспроизведению комплексы, и лишь потом возникли более стабильные молекулы ДНК.


Таблица сравнительной характеристики ДНК и РНК

ПризнакиДНКРНКОбщие1. Биополимеры 2. Участвуют в синтезе белка 3. Сходное строение мономеров: - азотистое основание - молекула пентозы - остаток фосфорной кислотыМестонахождениеСодержится, в основном, в ядре, образуя хромосомы, в митохондриях, в пластидахВ ядрышке, рибосомах, цитоплазме, митохондриях, хлоропластахСтроениеДвухцепочечная молекула, образующая спираль. Мономеры - дезоксирибонук-леотиды, в состав которых входят дезоксирибоза, азотистые основания - аденин, тимин, гуанин и цитозинОдноцепочечная молекула, мономеры рибонуклеотиды, в состав которых входят - рибоза, азотистые основания - аденин, урацил, гуанин и цитозинСвойстваСпособна к самоудвоению - редупликации, по принципу комплементарное™Не способна к самоудвоениюФункцииХимическая основа наследственности. Образует хромосомы, хранение и передача наследственной информации. Кодирует информацию о структуре белка. Наименьшей единицей наследственной информации являются три расположенных рядом нуклеотида - триплет. Является матрицей для синтеза молекул РНК, которая формируется на одной цепочке, по принципу комплементарное™Энергетическая - обеспечивает энергией процессы жизнедеятельности клетки: биосинтез, движение, сокращение мышц, активный перенос веществ через мембрану, и т.п. При отщеплении одной фосфатной группы выделяется 40 кДж

4. Понятие гена


Понятие гена занимает центральное место в генетике, и сама ее история в значительной степени отражает становление данного понятия.

Первоначально ген рассматривали с чисто формальной точки зрения, как некую абстрактную единицу, некий фактор, определяющий специфические особенности различных признаков. Какой-то период времени генетика по существу сводилась к менделизму, т.е. к анализу поведения наследственных факторов в разных системах скрещиваний организмов, у которых контролируемые этими факторами признаки контрастны. На основании результатов такого анализа Мендель в конце прошлого века пришел к заключению, что все комбинации признаков возникают в процессе случайного расширения и перераспределения таких факторов (позднее названных генами), определяющих различные признаки, при образовании гамет и оплодотворении.

Исследования Т. Моргана и его школы привели к «материализации» понятия «ген», к обретению им «плоти и крови». Итоги этих исследований дали Т. Моргану право утверждать «…не может быть сомнений, что генетики оперируют с геном как материальной частью хромосомы». Он же отметил как важнейшие следующие свойства генов: способность к росту, способность к делению, относительную стабильность, мутабильность, постоянное положение в хромосоме, «притяжение» генов друг к другу.

Таким образом, ген стали считать чем-то вроде атома наследственности, правда, довольно скоро возникла идея о его делимости, и о его сложной внутренней организации. Эти представления сформированы в России в работах А.С. Серебровского и Н.П. Дубинина.

Строения гена:

мутон - наименьший участок генетического материала, способный к мутации,

рекон - наименьший участок генетического материала, способный как целое участвовать в рекомбинации,

цистрон - единица функции генетического материала.

В настоящее время наиболее обычное определение гена следующее: ген - это отрезок генома (ДНК), который содержит все последовательности, кодирующие тот или иной белок, и который транскрибируется в виде одной про-мРНК. Это определение укладывается в классический постулат «один ген - один фермент (белок)».

Если рассматривать организацию гена, отталкиваясь от данных по структуре белка, то ген соответствует части мРНК, которая начинается инициирующим и заканчивается терминирующим кодоном, т.е. кодирующей части мРНК. Эта последовательность лежит в центральной части мРНК и транслируется в полипептид. Ей предшествует 5"-нетранслируемая область, а за нею расположена 3"-нетраслируемая область. Размеры нетранслируемых областей варьируют от одной мРНК к другой. Вероятнее всего, эти последовательности участвуют в регуляции процессов трансляции. Так имеются данные, что 3"-нетранслируемая область определяет время жизни мРНК, а последовательности 5"-нетранслируемой области могут влиять на эффективность процесса трансляции,

биология генетика научный

5. Генетика


Генетика - наука, изучающая наследственность и изменчивость - свойства, присущие всем живым организмам. Бесконечное разнообразие видов растений, животных и микроорганизмов поддерживается тем, что каждый вид сохраняет в ряду поколений характерные для него черты: на холодном Севере и в жарких странах корова всегда рождает теленка, курица выводит цыплят, а пшеница воспроизводит пшеницу. При этом живые существа индивидуальны: все люди разные, все кошки чем-то отличаются друг от друга, и даже колоски пшеницы, если присмотреться к ним повнимательнее, имеют свои особенности. Два эти важнейшие свойства живых существ - быть похожими на своих родителей и отличаться от них - и составляют суть понятий «наследственность» и «изменчивость». Истоки генетики, как и любой другой науки, следует искать в практике. С тех пор как люди занялись разведением животных и растений, они стали понимать, что признаки потомков зависят от свойств их родителей. Отбирая и скрещивая лучших особей, человек из поколения в поколение создавал породы животных и сорта растений с улучшенными свойствами. Бурное развитие племенного дела и растениеводства во второй половине 20 в. породило повышенный интерес к анализу феномена наследственности. В то время считали, что материальный субстрат наследственности - это гомогенное вещество, а наследственные субстанции родительских форм смешиваются у потомства подобно тому, как смешиваются друг с другом взаиморастворимые жидкости. Считалось также, что у животных и человека вещество наследственности каким-то образом связано с кровью: выражения «полукровка», «чистокровный» и др. сохранились до наших дней. Неудивительно, что современники не обратили внимания на результаты работы настоятеля монастыря в Брно Грегора Менделя по скрещиванию гороха. Никто из тех, кто слушал доклад Менделя на заседании Общества естествоиспытателей и врачей в 1865, не сумел разгадать в каких-то «странных» количественных соотношениях, обнаруженных Менделем при анализе гибридов гороха, фундаментальные биологические законы, а в человеке, открывшем их, основателя новой науки - генетики. После 35 лет забвения работа Менделя была оценена по достоинству: его законы были переоткрыты в 1900, а его имя вошло в историю науки. Законы генетики, открытые Менделем, Морганом и плеядой их последователей, описывают передачу признаков от родителей к детям. Они утверждают, что все наследуемые признаки определяются генами. Каждый ген может быть представлен в одной или большем числе форм, названных аллелями. Все клетки организма, кроме половых, содержат по два аллеля каждого гена, т.е. являются диплоидными. Если два аллеля идентичны, организм называют гомозиготным по этому гену. Если аллели разные, организм называют гетерозиготным. Клетки, участвующие в половом размножении (гаметы), содержат только один аллель каждого гена, т.е. они гаплоидны. Половина гамет, производимых особью, несет один аллель, а половина - другой. Объединение двух гаплоидных гамет при оплодотворении приводит к образованию диплоидной зиготы, которая развивается во взрослый организм. Гены - это определенные фрагменты ДНК; они организованы в хромосомы, находящиеся в ядре клетки. Каждый вид растений или животных имеет определенное число хромосом. У диплоидных организмов число хромосом парное, две хромосомы каждой пары называются гомологичными. Скажем, человек имеет 23 пары хромосом, при этом один гомолог каждой хромосомы получен от матери, а другой - от отца. Имеются и внеядерные гены (в митохондриях, а у растений - еще и в хлоропластах). Особенности передачи наследственной информации определяются внутриклеточными процессами: митозом и мейозом. Митоз - это процесс распределения хромосом по дочерним клеткам в ходе клеточного деления. В результате митоза каждая хромосома родительской клетки удваивается и идентичные копии расходятся по дочерним клеткам; при этом наследственная информация полностью передается от одной клетки к двум дочерним. Так происходит деление клеток в онтогенезе, т.е. процессе индивидуального развития. Мейоз - это специфическая форма клеточного деления, которая имеет место только при образовании половых клеток, или гамет (сперматозоидов и яйцеклеток). В отличие от митоза, число хромосом в ходе мейоза уменьшается вдвое; в каждую дочернюю клетку попадает лишь одна из двух гомологичных хромосом каждой пары, так что в половине дочерних клеток присутствует один гомолог, в другой половине - другой; при этом хромосомы распределяются в гаметах независимо друг от друга. (Гены митохондрий и хлоропластов не следуют закону равного распределения при делении.) При слиянии двух гаплоидных гамет (оплодотворении) вновь восстанавливается число хромосом - образуется диплоидная зигота, которая от каждого из родителей получила по одинарному набору хромосом. Методические подходы. Благодаря каким особенностям методического подхода Мендель сумел сделать свои открытия? Для своих опытов по скрещиванию он выбрал линии гороха, отличающиеся по одному альтернативному признаку (семена гладкие или морщинистые, семядоли желтые или зеленые, форма боба выпуклая или с перетяжками и др.). Потомство от каждого скрещивания он анализировал количественно, т.е. подсчитывал число растений с этими признаками, что до него никто не делал. Благодаря этому подходу (выбору качественно различающихся признаков), который лег в основу всех последующих генетических исследований, Мендель показал, что признаки родителей не смешиваются у потомков, а передаются из поколения в поколение неизменными. Заслуга Менделя состоит еще и в том, что он дал в руки генетиков мощный метод исследования наследственных признаков - гибридологический анализ, т.е. метод изучения генов путем анализа признаков потомков от определенных скрещиваний. В основе законов Менделя и гибридологического анализа лежат события, происходящие в мейозе: альтернативные аллели находятся в гомологичных хромосомах гибридов и потому расходятся поровну. Именно гибридологический анализ определяет требования к объектам общих генетических исследований: это должны быть легко культивируемые организмы, дающие многочисленное потомство и имеющие короткий репродуктивный период. Таким требованиям среди высших организмов отвечает плодовая мушка дрозофила - Drosophila melanogaster. На многие годы она стала излюбленным объектом генетических исследований. Усилиями генетиков разных стран на ней были открыты фундаментальные генетические явления. Было установлено, что гены расположены в хромосомах линейно и их распределение у потомков зависит от процессов мейоза; что гены, расположенные в одной и той же хромосоме, наследуются совместно (сцепление генов) и подвержены рекомбинации (кроссинговер). Открыты гены, локализованные в половых хромосомах, установлен характер их наследования, выявлены генетические основы определения пола. Обнаружено также, что гены не являются неизменными, а подвержены мутациям; что ген - сложная структура и имеется много форм (аллелей) одного и того же гена. Затем объектом более скрупулезных генетических исследований стали микроорганизмы, на которых стали изучать молекулярные механизмы наследственности. Так, на кишечной палочке Escheriсhia coli было открыто явление бактериальной трансформации - включение ДНК, принадлежащей клетке донора, в клетку реципиента - и впервые доказано, что именно ДНК является носителем генов. Была открыта структура ДНК, расшифрован генетический код, выявлены молекулярные механизмы мутаций, рекомбинации, геномных перестроек, исследованы регуляция активности гена, явление перемещения элементов генома и др. Наряду с указанными модельными организмами генетические исследования велись на множестве других видов, и универсальность основных генетических механизмов и методов их изучения была показана для всех организмов - от вирусов до человека. Достижения и проблемы современной генетики. На основе генетических исследований возникли новые области знания (молекулярная биология, молекулярная генетика), соответствующие биотехнологии (такие, как генная инженерия) и методы (например, полимеразная цепная реакция), позволяющие выделять и синтезировать нуклеотидные последовательности, встраивать их в геном, получать гибридные ДНК со свойствами, не существовавшими в природе. Получены многие препараты, без которых уже немыслима медицина (см. ГЕННАЯ ИНЖЕНЕРИЯ). Разработаны принципы выведения трансгенных растений и животных, обладающих признаками разных видов. Стало возможным характеризовать особей по многим полиморфным ДНК-маркерам: микросателлитам, нуклеотидным последовательностям и др. Большинство молекулярно-биологических методов не требуют гибридологического анализа. Однако при исследовании признаков, анализе маркеров и картировании генов этот классический метод генетики все еще необходим. Как и любая другая наука, генетика была и остается оружием недобросовестных ученых и политиков. Такая ее ветвь, как евгеника, согласно которой развитие человека полностью определяется его генотипом, послужила основой для создания в 1930-1960-е годы расовых теорий и программ стерилизации. Напротив, отрицание роли генов и принятие идеи о доминирующей роли среды привело к прекращению генетических исследований в СССР с конца 1940-х до середины 1960-х годов. Сейчас возникают экологические и этические проблемы в связи с работами по созданию «химер» - трансгенных растений и животных, «копированию» животных путем пересадки клеточного ядра в оплодотворенную яйцеклетку, генетической «паспортизации» людей и т.п. В ведущих державах мира принимаются законы, ставящие целью предотвратить нежелательные последствия таких работ. Современная генетика обеспечила новые возможности для исследования деятельности организма: с помощью индуцированных мутаций можно выключать и включать почти любые физиологические процессы, прерывать биосинтез белков в клетке, изменять морфогенез, останавливать развитие на определенной стадии. Мы теперь можем глубже исследовать популяционные и эволюционные процессы (, изучать наследственные болезни, проблему раковых заболеваний и многое другое. В последние годы бурное развитие молекулярно-биологических подходов и методов позволило генетикам не только расшифровать геномы многих организмов, но и конструировать живые существа с заданными свойствами. Таким образом, генетика открывает пути моделирования биологических процессов и способствует тому, что биология после длительного периода дробления на отдельные дисциплины вступает в эпоху объединения и синтеза знаний.